Flag

We stand with Ukraine and our team members from Ukraine. Here are ways you can help

Get exclusive access to thought-provoking articles, bonus podcast content, and cutting-edge whitepapers. Become a member of the UX Magazine community today!

Home ›› Analytics and Tracking ›› Improving Social Gaming Through Real-Time Data

Improving Social Gaming Through Real-Time Data

by Poulomi Damany
5 min read
Share this post on
Tweet
Share
Post
Share
Email
Print

Save

A look at the nuts and bolts of leveraging big data to make social games more rewarding, more popular, and more profitable.

Your millions of users may be coming up with their own cheat codes, tips, and tricks to win at your social game, but you’re trying to create a playbook as well—one that leverages your data to keep them engaged and returning regularly.

Data, particularly big data, has the potential to transform game analytics like never before. By collecting and analyzing the massive amounts of data now available in real-time or near-real-time, developers can respond quicker to make games more fun, more popular, and more profitable.

Three Key Advantages to Analytics

The advantages of all this fresh data accrue on three fronts.

  • First is better game play analytics. Optimizing game play is largely a matter of understanding how players move through a game—where they succeed, where they struggle, how they react to new game elements and so on. Through cohort analysis, developers can uncover the reasons players become frustrated and/or churn altogether. Real-time data can even reveal the immediate impact of new features, characters and levels of play.
  • Second, game developers can better understand how to grow their player base organically. By identifying which players are influencers—the ones who are inviting their friends to play—developers can incentivize that activity through instant rewards, credits, access to unique levels/regions, and other perks. Real-time data can be of immense help in incentivizing players; for example, rewards can be customized on the fly, such as offering a shield instead of a sword at a key moment in a game.
  • Third, and perhaps of most consequence is marketing ROI, both inside and outside the game. Developers want to know the true value of each dollar they invest in acquiring new users; to maximize this ROI, developers need to track and correlate their ad spend beyond just install counts. Rather the goal should be to tie the marketing ROI to the Long Term Value (LTV) of the user(s) acquired from an ad traffic source, using in-game behavior as the conversion goal. This kind of insight informs all kinds of decision-making, from long-term customer ROI strategies to how to target future users.

The Game of Analytics

Sophisticated, real-time game analytics, however, requires a rich mix of low-latency data from internal and external sources. The major problem is that these diverse data stores are in multiple formats and are usually semi-structured in nature. Gone are the days when analytics could be performed on well structured SQL database information. It’s a multi-source, multi-structured world out there—and taming it takes new thinking.

JSON (JavaScript Object Notation), a platform- and application-independent data format, is one key component of the solution. JSON is exploding in popularity because it allows virtually any application to exchange data freely, with schemas transmitted along with the information. Most relational database management systems, however, are not designed for the collection and storage of JSON data. What’s more, traditional business intelligence (BI) systems based in SQL, a database language expressly for use with structured data, cannot query large, semi-structured data stores.

Open source database management and querying platforms like Hadoop and MongoDB are popular ways to work with JSON data. Yet both of these have their limitations. Hadoop is a batch oriented architecture that requires Map Reduce “jobs” to be created, submitted, and run. This can take anywhere from minutes to hours to produce an output. That’s a non-starter when you want a fast answer across multiple records of quickly streaming and changing data or want to iterate quickly on ad-hoc, investigative analytics.

It’s a multi-source, multi-structured world out there—and taming it takes new thinking

And while MongoDB has its own query language to interrogate JSON data stored in Mongo itself, it is not built for complex analytics, requiring joins across collections and filters using multiple values, conditions and ranges where you know the arguments upfront. Things that are taken for granted in investigative analysis may run into syntax, memory, or performance problems, especially when working with large data sets.

Hadoop and MongoDB are also controlled through imperative code (Java), rather than a declarative query language (SQL), restricting their use to developers and programmers. This means the vast majority of business professionals skilled in SQL are rendered unproductive and dependent on a few, costly specialist set of resources to answer their analytics questions.

Analytics in the Cloud

These issues are why new Cloud Data Warehouse Services (DWS) have been invented. DWS solutions allow data to be collected and integrated from multiple sources in a single, consistent manner with low impact on engineering resources. DWS also accepts the JSON format—no upfront modeling or transformation required.

Perhaps best of all, a DWS allows game publishers to use common, SQL-based BI tools like Tableau and SQL Workbench to query their Big Data repositories. No one on the business or development side needs to learn new languages or software packages to instantly begin gaining powerful new insights. A DWS also allows game developers to implement business-specific rules on the data coming from various sources—something not possible with third-party mobile analytics solutions that are sold under a shared, multi-tenant model and as such, impose rate, size or schema limits.

DWS solutions take the headache and cost out of traditional data warehousing. With a few clicks, customers can spin up a multi-terabyte data warehouse cluster in minutes. Furthermore, loaded data is immediately available to view, aggregate, and join with other data as desired, all using SQL, with no need to modify anything even if data changes over time.

Changing Experiences in Gaming

With data growing at an exponential rate from mobile devices, tablets, and desktops, along with servers, third-party ad networks, social media hosts, and other sources, deriving insight is one of the greatest challenges facing game developers today. Waiting hours or days for data to be processed is no longer an option; the world simply moves too fast. Technology, however, is beginning to catch up. With the new options available, game developers and publishers have the upper hand to come up with the winning plays for long-term game success.

Image of girl playing mobile game courtesy Shutterstock.

post authorPoulomi Damany

Poulomi Damany
This user does not have bio yet.

Tweet
Share
Post
Share
Email
Print

Related Articles

AI design tools are here, but is your team ready? This article shows how to integrate them into real workflows, boost early-stage momentum, and build the skills that will shape design’s AI-powered future.

Article by Jim Gulsen
Is Your Team Ready for AI-Enhanced Design?
  • The article explores how AI design tools can accelerate early-stage workflows like wireframing and prototyping without disrupting established team processes.
  • It highlights the importance of integrating AI thoughtfully into collaborative environments, using tools like Lovable and Figma Make as case studies.
  • The piece argues that teams should start small, build prompting skills, and treat AI as a momentum booster, not a full design replacement.
Share:Is Your Team Ready for AI-Enhanced Design?
8 min read

Forget linear workflows — today’s creative process is dynamic, AI-assisted, and deeply personal. Learn how to build a system that flows with you, not against you.

Article by Jim Gulsen
The Creative Stack: How to Thrive in a Nonlinear, AI-Assisted World
  • The article explores the shift from linear to nonlinear, AI-assisted creative workflows.
  • It shares practical ways to reduce friction and improve flow by optimizing tools, habits, and environments.
  • It argues that success comes from designing your own system, not just using more tools.
Share:The Creative Stack: How to Thrive in a Nonlinear, AI-Assisted World
7 min read

How is AI really changing the way designers work, and what still depends on human skill? This honest take cuts through the hype to show where AI helps, where it falls short, and what great design still demands.

Article by Oleh Osadchyi
The Real Impact of AI on Designers’ Day-To-Day and Interfaces: What Still Matters
  • The article explores how AI is reshaping designers’ workflows, offering speed and support across research, implementation, and testing.
  • It argues that while AI is useful, it lacks depth and context — making human judgment, critical thinking, and user insight indispensable.
  • It emphasizes that core design principles remain unchanged, and designers must learn to integrate AI without losing their craft.
Share:The Real Impact of AI on Designers’ Day-To-Day and Interfaces: What Still Matters
9 min read

Join the UX Magazine community!

Stay informed with exclusive content on the intersection of UX, AI agents, and agentic automation—essential reading for future-focused professionals.

Hello!

You're officially a member of the UX Magazine Community.
We're excited to have you with us!

Thank you!

To begin viewing member content, please verify your email.

Tell us about you. Enroll in the course.

    This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and