Flag

We stand with Ukraine and our team members from Ukraine. Here are ways you can help

Home ›› Artificial Intelligence ›› How User Experience Research (UXR) Cam Help Build Responsible AI Applications

How User Experience Research (UXR) Cam Help Build Responsible AI Applications

by Celine Lenoble
3 min read
Share this post on
Tweet
Share
Post
Share
Email
Print

Save

How User Experience Research (UXR) Can Help Build Responsible AI Applications?

Learn ways user experience research can help build responsible AI applications.

 

Today, Artificial Intelligence (AI) and, more specifically, Machine Learning are pervasive in our daily lives. From Facebook ads to YouTube recommendations, from Siri to Google Assistant, and from an automated translation of device notice to marketing personalization tools, AI now deeply permeates both our work and personal lives.

This article is the second in a series of three (catch up on the first installment here and third here) that advocate for renewed UX research efforts in ML apps.

With ML facing so many users, there is a case to approach the conception and design of ML-powered applications from a UX research perspective.

This lies on three main reasons:

1. Mental models of users haven’t caught up with how ML and AI truly work:

  • UXR can uncover existing mental mentals and help design new ones that are more suited to this new tech.

2. ML and AI can have an insidious and deep impact on all users’ lives:

  • UXR reveals the myriad of intended and unintended effects of apps on people’s life — and help build more ethical AI.

3. ML and AI can have disparate impacts on individuals based on their ethnicity, religion, gender, sexual orientation:

  • UXR can also help address some of the sources of bias.

In this episode, we will focus on the second reason:

How to assess the impact of ML-apps on users and meet AI ethical standards?

Most ML algorithms are supposed to assist humans in their decision-making process but not make the decision themselves. However, more and more, AI systems do not content themselves in making recommendations — they make decisions. This is the case from sifting through resumes to selecting which neighborhoods to patrol for the next policy shift.

Given the scale AI systems operate, the potential impacts on specific individuals, groups, or even society, is deep and wide. While harmful human practices have always existed, they have evolved alongside social and legal guidelines that mitigate them. Not so much for AI-driven systems — yet.

Ethics in AI

Research on ethical AI has been conducted by academic researchers, industries, or governments, and they have produced a series of guidelines.

Microsoft lists 6 principles for a responsible AI: Fairness, reliability & safety, privacy & security, inclusiveness, transparency, and accountability.

And a High-Level Expert Group on Artificial Intelligence published Ethics Guidelines for Trustworthy AI for the European Union in 2019 that explains:

Develop, deploy and use AI systems in a way that adheres to the ethical principles of: respect for human autonomy, prevention of harm, fairness and explicability. Acknowledge and address the potential tensions between these principles.

While the research on these high-level principles is well engaged, there is a gap between policies and guidelines and their implementation. When should data scientists concern themselves with these considerations? How can product managers integrate them into their roadmap? What practical steps can they take to ensure their app will be responsible and trustworthy?

The Partnership for AI, a non-profit that includes industry leaders, universities, and civil society groups, acknowledges that all AI stakeholders need to be actively involved in preventing potential harm resulting from such research:

Through our work, it has become clear that effectively anticipating and mitigating downstream consequences of AI research requires community-wide effort; it cannot be the responsibility of any one group alone. The AI research ecosystem includes both industry and academia, and comprises researchers, engineers, reviewers, conferences, journals, grantmakers, team leads, product managers, administrators, communicators, institutional leaders, data scientists, social scientists, policymakers, and others.

post authorCeline Lenoble

Celine Lenoble,

I am Director of UX Research at brainlabs where I lead a team of CRO analysts and UX researchers with diverse backgrounds. I believe in a holistic approach to UX research and design combining all perspectives: Human Computer Interaction, design thinking, psychology, sociology, anthropology and all methods: from big data to ethnographic study. I am particularly interested in the UX of ML-powered products & services. Disclaimer: opinions represented here are personal and do not represent those of brainlabs.

Tweet
Share
Post
Share
Email
Print
Ideas In Brief
  • UXR reveals the myriad of intended and unintended effects of apps on people’s life — and help build more ethical AI
  • The author talks about:
    • How to assess the impact of ML-apps on users and meet AI ethical standards?
    • Ethics in AI

Related Articles

Discover the future of user interfaces with aiOS, an AI-powered operating system that promises seamless, intuitive experiences by integrating dynamic interfaces, interoperable apps, and context-aware functionality. Could this be the next big thing in tech?

Article by Kshitij Agrawal
The Next Big AI-UX Trend—It’s not Conversational UI
  • The article explores the concept of an AI-powered operating system (aiOS), emphasizing dynamic interfaces, interoperable apps, context-aware functionality, and the idea that all interactions can serve as inputs and outputs.
  • It envisions a future where AI simplifies user experiences by seamlessly integrating apps and data, making interactions more intuitive and efficient.
  • The article suggests that aiOS could revolutionize how we interact with technology, bringing a more cohesive and intelligent user experience.
Share:The Next Big AI-UX Trend—It’s not Conversational UI
5 min read

Curious about the next frontier in AI design? Discover how AI can go beyond chatbots to create seamless, context-aware interactions that anticipate user needs. Dive into the future of AI in UX design with this insightful article!

Article by Maximillian Piras
When Words Cannot Describe: Designing For AI Beyond Conversational Interfaces
  • The article explores the future of AI design, moving beyond simple chatbots to more sophisticated, integrated systems.
  • It argues that while conversational interfaces have been the focus, the potential for AI lies in creating seamless, contextual interactions across different platforms and devices.
  • The piece highlights the importance of understanding user intent and context, advocating for AI systems that can anticipate needs and provide personalized experiences.
Share:When Words Cannot Describe: Designing For AI Beyond Conversational Interfaces
21 min read

Uncover the dynamic landscape of UX design as artificial intelligence continues to reshape the field. With automated tools revolutionizing our roles, what does the future hold for designers?

Article by Michal Malewicz
The End of Design?
  • The article explores the impact of AI on UX design, questioning the future role of designers as automated tools become more prevalent.
  • It highlights the historical evolution of UX design and the commodification of design roles, emphasizing the shift from creative problem-solving to efficiency-driven practices.
  • It emphasizes the need for future designers to be generalists with strong decision-making skills, capable of leading projects and maintaining creativity in an AI-driven landscape.
Share:The End of Design?
9 min read

Tell us about you. Enroll in the course.

    This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and