Flag

We stand with Ukraine and our team members from Ukraine. Here are ways you can help

Get exclusive access to thought-provoking articles, bonus podcast content, and cutting-edge whitepapers. Become a member of the UX Magazine community today!

Home ›› Artificial Intelligence ›› How User Experience Research (UXR) Cam Help Build Responsible AI Applications

How User Experience Research (UXR) Cam Help Build Responsible AI Applications

by Celine Lenoble
3 min read
Share this post on
Tweet
Share
Post
Share
Email
Print

Save

How User Experience Research (UXR) Can Help Build Responsible AI Applications?

Learn ways user experience research can help build responsible AI applications.

 

Today, Artificial Intelligence (AI) and, more specifically, Machine Learning are pervasive in our daily lives. From Facebook ads to YouTube recommendations, from Siri to Google Assistant, and from an automated translation of device notice to marketing personalization tools, AI now deeply permeates both our work and personal lives.

This article is the second in a series of three (catch up on the first installment here and third here) that advocate for renewed UX research efforts in ML apps.

With ML facing so many users, there is a case to approach the conception and design of ML-powered applications from a UX research perspective.

This lies on three main reasons:

1. Mental models of users haven’t caught up with how ML and AI truly work:

  • UXR can uncover existing mental mentals and help design new ones that are more suited to this new tech.

2. ML and AI can have an insidious and deep impact on all users’ lives:

  • UXR reveals the myriad of intended and unintended effects of apps on people’s life — and help build more ethical AI.

3. ML and AI can have disparate impacts on individuals based on their ethnicity, religion, gender, sexual orientation:

  • UXR can also help address some of the sources of bias.

In this episode, we will focus on the second reason:

How to assess the impact of ML-apps on users and meet AI ethical standards?

Most ML algorithms are supposed to assist humans in their decision-making process but not make the decision themselves. However, more and more, AI systems do not content themselves in making recommendations — they make decisions. This is the case from sifting through resumes to selecting which neighborhoods to patrol for the next policy shift.

Given the scale AI systems operate, the potential impacts on specific individuals, groups, or even society, is deep and wide. While harmful human practices have always existed, they have evolved alongside social and legal guidelines that mitigate them. Not so much for AI-driven systems — yet.

Ethics in AI

Research on ethical AI has been conducted by academic researchers, industries, or governments, and they have produced a series of guidelines.

Microsoft lists 6 principles for a responsible AI: Fairness, reliability & safety, privacy & security, inclusiveness, transparency, and accountability.

And a High-Level Expert Group on Artificial Intelligence published Ethics Guidelines for Trustworthy AI for the European Union in 2019 that explains:

Develop, deploy and use AI systems in a way that adheres to the ethical principles of: respect for human autonomy, prevention of harm, fairness and explicability. Acknowledge and address the potential tensions between these principles.

While the research on these high-level principles is well engaged, there is a gap between policies and guidelines and their implementation. When should data scientists concern themselves with these considerations? How can product managers integrate them into their roadmap? What practical steps can they take to ensure their app will be responsible and trustworthy?

The Partnership for AI, a non-profit that includes industry leaders, universities, and civil society groups, acknowledges that all AI stakeholders need to be actively involved in preventing potential harm resulting from such research:

Through our work, it has become clear that effectively anticipating and mitigating downstream consequences of AI research requires community-wide effort; it cannot be the responsibility of any one group alone. The AI research ecosystem includes both industry and academia, and comprises researchers, engineers, reviewers, conferences, journals, grantmakers, team leads, product managers, administrators, communicators, institutional leaders, data scientists, social scientists, policymakers, and others.

post authorCeline Lenoble

Celine Lenoble

I am Director of UX Research at brainlabs where I lead a team of CRO analysts and UX researchers with diverse backgrounds. I believe in a holistic approach to UX research and design combining all perspectives: Human Computer Interaction, design thinking, psychology, sociology, anthropology and all methods: from big data to ethnographic study. I am particularly interested in the UX of ML-powered products & services. Disclaimer: opinions represented here are personal and do not represent those of brainlabs.

Tweet
Share
Post
Share
Email
Print
Ideas In Brief
  • UXR reveals the myriad of intended and unintended effects of apps on people’s life — and help build more ethical AI
  • The author talks about:
    • How to assess the impact of ML-apps on users and meet AI ethical standards?
    • Ethics in AI

Related Articles

AI is reshaping the role of designers, shifting them from creators to curators. This article explores how AI tools are changing design workflows, allowing designers to focus more on strategy and user experience. Discover how this shift is revolutionizing the design process and the future of creative work.

Article by Andy Budd
The Future of Design: How AI Is Shifting Designers from Makers to Curators
  • This article examines how AI is transforming the role of designers, shifting them from creators to curators.
  • It explores how AI tools are enhancing design processes by automating routine tasks, allowing designers to focus on strategic decision-making and curating user experiences.
  • The piece highlights the growing importance of creativity in managing AI-driven systems and fostering collaboration across teams, ultimately reshaping the future of design work.
Share:The Future of Design: How AI Is Shifting Designers from Makers to Curators
5 min read

Are you overthinking your research process? This article explores how to determine when research is essential and when it might be holding you back. Learn a practical framework to prioritize studies, align with stakeholders, and maximize impact without wasting time or resources. Unlock strategies to focus your efforts on what truly matters.

Article by Carol Rossi
Are You Doing Too Much Research?
  • The article questions the common practice of conducting extensive research, suggesting that not all projects require it. Instead, it highlights the importance of discerning when research is truly necessary.
  • It introduces a framework to prioritize research efforts based on clarity, risk, and cost, ensuring impactful results without unnecessary delays.
  • The author emphasizes the role of stakeholder involvement in the research process, fostering better collaboration and alignment with organizational goals.
  • Practical strategies are provided for tracking and communicating the post-research impact, making the value of research more transparent and measurable.
Share:Are You Doing Too Much Research?
7 min read

Learn how to design and facilitate impactful co-creation sessions that inspire collaboration, spark creativity, and align diverse perspectives for meaningful outcomes.

Article by Aalap Doshi
Designing and Facilitating a Co-Creation Session
  • This article delves into the process of designing and facilitating effective co-creation sessions to foster collaborative innovation.
  • It outlines key steps, including planning, creating a structured agenda, and using tools to engage participants meaningfully.
  • The piece highlights how co-creation sessions can drive creativity, align diverse stakeholders, and generate actionable outcomes for complex challenges.
Share:Designing and Facilitating a Co-Creation Session
3 min read

Join the UX Magazine community!

Stay informed with exclusive content on the intersection of UX, AI agents, and agentic automation—essential reading for future-focused professionals.

Hello!

You're officially a member of the UX Magazine Community.
We're excited to have you with us!

Thank you!

To begin viewing member content, please verify your email.

Tell us about you. Enroll in the course.

    This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and