Flag

We stand with Ukraine and our team members from Ukraine. Here are ways you can help

Get exclusive access to thought-provoking articles, bonus podcast content, and cutting-edge whitepapers. Become a member of the UX Magazine community today!

Home ›› Content and Copy ›› Card Decks: Tactile Tools for Pattern Finders, Integrative Thinkers, and Inspiration Seekers

Card Decks: Tactile Tools for Pattern Finders, Integrative Thinkers, and Inspiration Seekers

by Stephanie Gioia
4 min read
Share this post on
Tweet
Share
Post
Share
Email
Print

Save

Card decks are an enduring tool with the power to transform digital and physical experiences by helping designers reorganize their thoughts and inspiring new interfaces

What do the Table of Elements, the first IBM computer, and the novel Lolita have in common? Before they were icons of human achievement, they were card decks. Each teaches a lesson for how card decks can be a powerful tool for pattern finders, integrative thinkers, and inspiration seekers.

Before we go there, what does a card deck have to do with UX? In interaction design, card decks are useful both as design tools and as inspiration for digital experience. As design tools, interaction designers may use card decks to keep a checklist of considerations, inspire creative thinking, or conduct user research. Digital experiences themselves are increasingly mimicking the sensation of playing with a deck of cards. Facebook, Flipboard, Twitter, Trello, Tinder, and Google Now are just some of the big names experimenting with the digitization of a tactical experience we are all familiar with: a deck of cards.

If you’re looking for practical ways to experiment with decks in your own work, consider the lessons learned from the most famous breakthroughs that began life as cards.

Card Decks are Elemental

Dmitri Mendeleev was the first scientist to order the elements by atomic mass, resulting in what is now the periodic table. Mendeleev carried a deck of cards—each with an element and some of its known properties—using time on train rides to play “chemical solitaire” and look for patterns.

Lesson #1: When looking for a pattern or structure to bring meaning to complex information, break information into movable nodes and seek multiple possible configurations until the relationships within the system come into focus.

Card Decks Ushered in the Computing Age

Herman Hollerith developed a machine that could tabulate statistics by reading information encoded on physical cards through the placement of holes in a grid. Hollerith’s invention revolutionized the field of data statistics and marked the beginning of the computing age. His Tabulating Machine Company later became IBM.

Lesson #2: “Code” your individual cards in as many ways as possible, using symbols and colors to categorize information. Structure may later emerge from this metadata.

Card Decks Make for Great Reading

Vladimir Nabokov, author of many novels including “Lolita,” composed his work using an index-card-based method, assembling stories in fragments. In an interview with The Paris Review, Nabokov described his card method: “The pattern of the thing precedes the thing. I fill in the gaps of the crossword at any spot I happen to choose. These bits I write on index cards until the novel is done. My schedule is flexible, but I am rather particular about my instruments: lined Bristol cards and well-sharpened, not too hard, pencils capped with erasers.”

Lesson #3: Save your thoughts in fragments—a memorable quote, a midnight brainstorm, a crucial statistic, a sketch—to maintain a pool of content that can be assembled or reassembled for multiple possible uses. Communicating your ideas to audiences that vary in their perspectives and needs is much easier when you can rapidly pull the most relevant content or storytelling approach for each audience.

“The pattern of the thing precedes the thing”—Nabakov

What gives card decks this unique power to create new meaning in the world? The basis of visual thinking is the analysis (i.e., disaggregation) of a complex idea into “nodes”, followed by the synthesis (i.e., reintegration) of those “nodes” through “links” into a new meaningful whole. At the most basic level, cards are “nodes” in search of “links.” In personal creative practice, card decks are a powerful problem-solving tool because we often know the parts of a problem or solution, but we don’t yet know how they fit together in an insightful way. Decks are a way for us to hold those nodes in creative tension until a pattern emerges.

Many applications of cards in UX don’t capitalize on their unique qualities. To make the most of your card-based interaction design, consider the five properties and seven experiential motions of tactile decks:

Five properties of decks:
  1. Nodality: cards must be movable pieces
  2. Set: the deck represents a complete universe
  3. Taxonomy: the deck relies on an organizing system or common framework
  4. Multiple Valuable Configurations: the deck’s utility is derived from a variety of valuable configurations that encourage interaction. A deck with only one valuable configuration would be static (like a book)
  5. Sidedness: cards have two sides, but the sides are not visible simultaneously

When interacting with decks, users make randomizing motions and sensemaking motions.

The Randomizers:
  • Shuffle
  • Deal
  • Draw
  • Flip
The Sensemakers:
  • Sort/Group/Stack
  • Sequence/Rank
  • Compare/Combine

As “shuffle” and “flip” give way to “tap” and “swipe” through the digitization of card-based experiences, returning to these intuitive motions and properties can guide interaction innovation. These properties that have made physical card decks an enduring sense-making tool have the power to transform digital UX by both inspiring new interfaces and equipping designers with a practical tool that may make them the next Mendeleev, Nabokov, or Hollerith.

 

Lead image of XPLANE Discovery Deck.

post authorStephanie Gioia

Stephanie Gioia
Stephanie leads the consulting practice at XPLANE, a Portland-based business design consultancy that helps large organizations clarify, communicate, and achieve their goals. She also curates a library of card decks and resources for deck designers at deckaholic.com. Prior to XPLANE, Stephanie worked with IDEO on envisioning the future of design thinking.  Stephanie led process and organizational design programs at the financial services firm UBS and power company AES. Stephanie holds a bachelors degree in history and government from Georgetown University and an MBA from the Ross School of Business at the University of Michigan.

Tweet
Share
Post
Share
Email
Print

Related Articles

The role of the Head of Design is transforming. Dive into how modern design leaders amplify impact, foster innovation, and shape strategic culture, redefining what it means to lead design today.

Article by Darren Smith
Head of Design is Dead, Long Live the Head of Design!
  • The article examines the evolving role of the Head of Design, highlighting shifts in expectations, responsibilities, and leadership impact within design teams.
  • It discusses how design leaders amplify team performance, foster innovation, and align design initiatives with broader business goals, especially under changing demands in leadership roles.
  • The piece emphasizes the critical value of design leadership as a multiplier for organizational success, offering insights into the unique contributions that design leaders bring to strategy, culture, and team cohesion.
Share:Head of Design is Dead, Long Live the Head of Design!
9 min read

Discover how digital twins are transforming industries by enabling innovation and reducing waste. This article delves into the power of digital twins to create virtual replicas, allowing companies to improve products, processes, and sustainability efforts before physical resources are used. Read on to see how this cutting-edge technology helps streamline operations and drive smarter, eco-friendly decisions

Article by Alla Slesarenko
How Digital Twins Drive Innovation and Minimize Waste
  • The article explores how digital twins—virtual models of physical objects—enable organizations to drive innovation by allowing testing and improvements before physical implementation.
  • It discusses how digital twins can minimize waste and increase efficiency by identifying potential issues early, ultimately optimizing resource use.
  • The piece emphasizes the role of digital twins in various sectors, showcasing their capacity to improve processes, product development, and sustainability initiatives.
Share:How Digital Twins Drive Innovation and Minimize Waste
5 min read

Is banning AI in education a solution or a missed opportunity? This thought-provoking piece dives into how outdated assessment methods may be fueling academic dishonesty — and why embracing AI could transform learning for the better.

Article by Enrique Dans
On the Question of Cheating and Dishonesty in Education in the Age of AI
  • The article challenges the view that cheating is solely a student issue, suggesting assessment reform to address deeper causes of dishonesty.
  • It advocates for evaluating AI use in education instead of banning it, encouraging responsible use to boost learning.
  • The piece critiques GPA as a limiting metric, proposing more meaningful ways to assess student capabilities.
  • The article calls for updated ethics that reward effective AI use instead of punishing adaptation.
  • It envisions AI as a transformative tool to modernize and enhance learning practices.
Share:On the Question of Cheating and Dishonesty in Education in the Age of AI
4 min read

Join the UX Magazine community!

Stay informed with exclusive content on the intersection of UX, AI agents, and agentic automation—essential reading for future-focused professionals.

Hello!

You're officially a member of the UX Magazine Community.
We're excited to have you with us!

Thank you!

To begin viewing member content, please verify your email.

Tell us about you. Enroll in the course.

    This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and