Flag

We stand with Ukraine and our team members from Ukraine. Here are ways you can help

Get exclusive access to thought-provoking articles, bonus podcast content, and cutting-edge whitepapers. Become a member of the UX Magazine community today!

Home ›› Artificial Intelligence ›› No More Random Acts of Bot-Building

No More Random Acts of Bot-Building

by Lance Christmann
4 min read
Share this post on
Tweet
Share
Post
Share
Email
Print

Save

RandomBotting_Slider

The race toward hyper-automation is marked by pitfalls and staggering opportunities

So your organization has a bot problem. Have no fear, this is a common malady in the brackish waters where AI and automation swirl together. As UX practitioners know, these intertwined technologies will figure heavily into the future of every organization on the planet. Chatbots are easy to set up and seem to check both boxes, but even an entire fleet of independently operating chabots can’t be thought of as intelligent automation.

If your bot problem is just that—a group of bots working in their own little towers and providing very limited value to your customers or your workforce—you likely feel like you’ve been chasing windmills. These random acts of botting are consistent pain points for nearly every organization that commits them, but there is a way to bring bots together in harmony. Leveraging many of the processes experience designers are already familiar with, you can create the type of automation that works within the framework of your company, giving customers meaningful experiences and reducing the number of menial tasks team members have to deal with.

To stay competitive, companies need to avoid random acts of technology and adopt a strategy for building an intelligent ecosystem of digital workers. A well-designed ecosystem can interact directly with customers, team members, and with one-another, automating services and systems. Creating one is no small undertaking, but tools exist that can leverage the strengths and knowledge of your entire workforce to achieve what Gartner calls hyper-automation.

What is Hyper-Automation and How Does an Organization Achieve It?

The best way to think of hyper-automation is as the sequencing of disruptive technologies to automate tasks within an interconnected ecosystem of high-functioning bots. The tools an organization uses to develop an intelligent ecosystem of digital workers are novel in their own right, making the process more sophisticated, but also more engaging and manageable. Here are three of the key components you need to get it right:

Conversational AI 

The impact of this technology—not just on automation but on our daily lives—warrants it’s own book. Alexa, Siri, Google Voice, et al are only scratching the surface when it comes to the full potential of conversational AI. A seamless interface that works on human terms, not in computer language. This is one of the disruptive technologies that is sequenced to achieve hyper-automation. Sequencing conversational AI effectively takes it well beyond bots interacting with customers in a limited capacity. To build an intelligent ecosystem, team members converse directly with bots—or intelligent digital workers (IDWs)—teaching them how to perform complex tasks and giving them the context necessary to make independent decisions.

Novel Co-Creation

With the power of conversational AI, team members co-create with IDWs to automate the systems they know best. As they design microservices that sequence into automated services, they are contributing to a shared library that can be modified to perform new tasks while still working within the ecosystem at large. The process is guided by a core-creation team that brings the entire organization into the fold.

Shared Strategy

For these efforts to succeed, there needs to be a constant flow of ideas and direction. An organization’s strategic liaison moves between camps, assisting and evangelizing to designers, stakeholders, and the departments within an organization that are being automated. Realizing that hyper-automation will affect everyone working for the company and that all departments will pull from a shared library of skills, the person in this role spends their days moving between departments, analyzing roles and tasks, and translating those jobs into a framework of automation.

The Right Tools

Creating an ecosystem like the one we’re describing requires a code-free system for building a shared library of microservices that can be endlessly reconfigured and sequenced into useful services. A no-code approach makes it vastly easier for every member of your organization to contribute to the automation of tasks that they understand best. This is what allows hyper-automation to take root within your organization and continue to grow.

How Big is the Payoff?

While the ROI on creating an intelligent ecosystem of digital workers would be hard to overstate the bigger incentive here is that companies implementing hyper-automation successfully are putting themselves in a different league than their nearest competitors. These organizations are creating experiences for customers and internal users that are more than just rewarding, they are transformational.

Hyper-automated companies are not only accomplishing far more with far less effort, it’s also easier for them to further automate new and more sophisticated processes and tasks. So in the short term, the payoff is that your organization gets to remain competitive. The long term-dividends, it would seem, have the potential to compound exponentially.

 

Want to learn more about hyper-automation? Check out the rest of our mini-white paper, No More Random Acts of Bot-Building.

Source:  No More Random Acts of Bot-Building, OneReach.ai

post authorLance Christmann

Lance Christmann

AI researcher, technologist, designer, and innovator. Lance Christmann is the head of experience design at OneReach.ai, where his strong background in interface design and design management, extends the user-centered design approach across all departments. Lance has created  many products and enterprise applications and conversational AI experiences over his career for brands such as  FedEx, Boeing, and the design of the highly acclaimed eBay Desktop application which won an Abode MAX award. Prior to joining OneReach.ai, Lance served as chief experience strategist at EffectiveUI, a full-service user experience agency acquired by WPP/Ogilvy.  

Tweet
Share
Post
Share
Email
Print

Related Articles

AI didn’t just change work — it removed the starting point. This piece explores what happens when early-career jobs vanish, and why the most “future-proof” skills might be the oldest ones.

Article by Pavel Bukengolts
AI, Early-Career Jobs, and the Return to Thinking
  • The article illustrates how AI is quickly taking over beginner-level jobs that involve routine work.
  • The piece argues that the skills that remain most valuable are human ones, like critical thinking, communication, big-picture understanding, and ethics.
  • It suggests that companies must decide whether to replace junior staff with AI or use AI to help train and support them.
Share:AI, Early-Career Jobs, and the Return to Thinking
5 min read

Discover how human-centered UX design is transforming medtech by cutting costs, reducing errors, and driving better outcomes for clinicians, patients, and healthcare providers alike.

Article by Dennis Lenard
How UX Design is Revolutionising Medtech Cost Efficiency
  • The article explains how strategic UX design in medtech improves cost efficiency by enhancing usability, reducing training time, and minimizing user errors across clinical workflows.
  • The piece argues that intuitive, user-centered interfaces boost productivity, adoption rates, and patient outcomes while lowering support costs and extending product lifecycles, making UX a crucial investment for sustainable growth and ROI in healthcare technology.
Share:How UX Design is Revolutionising Medtech Cost Efficiency
7 min read

Discover how the future of AI runs on purpose-built infrastructure.

Article by UX Magazine Staff
AI Agent Runtimes in Dedicated Lanes: Lessons from China’s EV Roads
  • The article states that AI’s progress depends less on creating larger models and more on developing specialized “lanes” (agent runtimes) where AI can run safely and efficiently.
  • It argues that, like China’s EV-only highways, these runtimes are designed for smooth flow, constant energy (through memory and context), and safe, reliable operation, much like EV-only highways in China.
  • The piece concludes that building this kind of infrastructure takes effort and oversight, but it enables AI systems to work together, grow, and improve sustainably.
Share:AI Agent Runtimes in Dedicated Lanes: Lessons from China’s EV Roads
4 min read

Join the UX Magazine community!

Stay informed with exclusive content on the intersection of UX, AI agents, and agentic automation—essential reading for future-focused professionals.

Hello!

You're officially a member of the UX Magazine Community.
We're excited to have you with us!

Thank you!

To begin viewing member content, please verify your email.

Get Paid to Test AI Products

Earn an average of $100 per test by reviewing AI-first product experiences and sharing your feedback.

    Tell us about you. Enroll in the course.

      This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and