Flag

We stand with Ukraine and our team members from Ukraine. Here are ways you can help

Get exclusive access to thought-provoking articles, bonus podcast content, and cutting-edge whitepapers. Become a member of the UX Magazine community today!

Home ›› Google ›› Google’s Dilemma (GPT3)

Google’s Dilemma (GPT3)

by Aydin Ozcekic
3 min read
Share this post on
Tweet
Share
Post
Share
Email
Print

Save

What to expect from Google after a GPT3 solution release?

Google search is the search engine in the world. The latest earnings report from Alphabet, Google’s parent company, shows that search ads continue to drive Google’s revenue. In Q3 2022, Google’s revenue totaled $69.1 billion, of which $39.5 billion (or 57.2%) was from search ads.

Everybody is expecting a response from Google against the GPT3 solution. Everybody knows that Google has everything to create the best AI solutions.

Google Dilemma

Google monetizes search business and creates massive revenue. Hence, they have a fear of disrupting their business line. Monetization is a crucial thing for R&D projects. A lot of successful high-tech start-up struggle with the monetization of their business. Google solved this problem and transformed itself from a start-up to a tech giant.

Now they are unsure how to position a GPT3 type of solution in their revenue stream.

There is a borderline between GPT3 and Google Search. GPT3 is a language model that can reach data and create answers. Google search is a “to-do point” search tool to show you the possible best resources. Google search allows users to do their own research and not be responsible for the content. However, GPT3 is responsible for the answer. Because this answer is not referenced to another source. If you were Google, would you want to take this responsibility and threaten your easy search income? I don’t think so.

Another difference between Google Search and GPT3 is that Google knows what people are looking for. GPT3 focuses on the best answer it can generate. Google predicts what you can ask. This is far more important than the answer. I always believe that the right questions make a difference.

What should Google do?

Google is not an agile start-up anymore. They are a tech giant, so they can’t answer all hypes with a move. GPT3 shows a new product line that can disrupt search. But Google has more than an algorithm. They know the behaviors of people. They have data about what you search for when you search and the actions you take. So, this is a different business model.

Google search already answers some questions, and people use these answers in daily life. The critical point is that Google doesn’t want to break links with the websites. Because websites are the backbone of income, it is essential to support the future of the web.

Centralization of Knowledge

GPT3 is the side of centralization of knowledge (Single Source of Truth). But Google is the side of the diversity of knowledge. You can search and reach ten different opinions. But GPT3 gives you the most likable answer. Because the GPT3 tries to make the end user happy, which creates bias. The answer you want to hear can be the worst answer to that question.

So, GPT3 can be a data dictator. And unexpectedly, Google can be a democratic alternative. This is not about the ethic of Google; democracy and competition on the web is the primary source of income for Google.

In other words, creating a single source of truth with centralized AI is the enemy of Google. Google’s business model focuses on the competition of different knowledge nodes on the web.

I am on the side of Google. I want to search and reach my answers instead of the quick answers from an AI model. When I use GPT3, I go to google search to verify the answer. So, the competition of websites is a better case against the competition of AI dictator bots.

Lastly, I am waiting for a solution from Google to answer questions with different references and comparisons from the web. We will see 🙂

post authorAydin Ozcekic

Aydin Ozcekic

Aydin Ozcekic is the CEO of Botmore Technology, based in London. With over 15 years of experience in AI implementation across various industries, Aydin brings a wealth of knowledge to the table. He holds both an engineering degree and an MBA, making him well-equipped to lead and manage R&D projects in the UK and Turkey.

Tweet
Share
Post
Share
Email
Print
Ideas In Brief
  • Everyone is waiting for Google to respond to the GPT3 solution as Google possesses the necessary tools to develop the greatest AI solutions.
  • There is a significant distinction between the ways GPT3 and Google search operate:
    • GPT3 can access data and produce solutions while Google displays the best resources that might be available.
    • GPT3 is responsible for the answer it produces while Google is not.
    • GPT3 concentrates on producing the best possible response while Google anticipates your questions.
    • GPT3 represents the side of knowledge centralization while Google represents the diversity of knowledge.
  • According to the author, it’s crucial for Google to support websites that are the foundation of revenue and not change the way it works.

Related Articles

AI is changing how designers work — speeding up workflows, sparking creativity, and taking care of the tedious parts. But it’s not here to replace designers — it’s here to amplify their insight, empathy, and impact.

Article by Nayyer Abbas
AI Boosts for UI/UX Designers: Fast Growth with Smart Tools
  • The article explores how AI transforms UI/UX design by automating repetitive tasks, speeding up workflows, and enhancing creativity across ideation, prototyping, and research.
  • It argues that AI empowers rather than replaces designers, freeing them to focus on insight, empathy, and strategy while maintaining ethical and user-centered design.
Share:AI Boosts for UI/UX Designers: Fast Growth with Smart Tools
5 min read

AI didn’t just change work — it removed the starting point. This piece explores what happens when early-career jobs vanish, and why the most “future-proof” skills might be the oldest ones.

Article by Pavel Bukengolts
AI, Early-Career Jobs, and the Return to Thinking
  • The article illustrates how AI is quickly taking over beginner-level jobs that involve routine work.
  • The piece argues that the skills that remain most valuable are human ones, like critical thinking, communication, big-picture understanding, and ethics.
  • It suggests that companies must decide whether to replace junior staff with AI or use AI to help train and support them.
Share:AI, Early-Career Jobs, and the Return to Thinking
5 min read

Discover how the future of AI runs on purpose-built infrastructure.

Article by UX Magazine Staff
AI Agent Runtimes in Dedicated Lanes: Lessons from China’s EV Roads
  • The article states that AI’s progress depends less on creating larger models and more on developing specialized “lanes” (agent runtimes) where AI can run safely and efficiently.
  • It argues that, like China’s EV-only highways, these runtimes are designed for smooth flow, constant energy (through memory and context), and safe, reliable operation, much like EV-only highways in China.
  • The piece concludes that building this kind of infrastructure takes effort and oversight, but it enables AI systems to work together, grow, and improve sustainably.
Share:AI Agent Runtimes in Dedicated Lanes: Lessons from China’s EV Roads
4 min read

Join the UX Magazine community!

Stay informed with exclusive content on the intersection of UX, AI agents, and agentic automation—essential reading for future-focused professionals.

Hello!

You're officially a member of the UX Magazine Community.
We're excited to have you with us!

Thank you!

To begin viewing member content, please verify your email.

Get Paid to Test AI Products

Earn an average of $100 per test by reviewing AI-first product experiences and sharing your feedback.

    Tell us about you. Enroll in the course.

      This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and