Flag

We stand with Ukraine and our team members from Ukraine. Here are ways you can help

Get exclusive access to thought-provoking articles, bonus podcast content, and cutting-edge whitepapers. Become a member of the UX Magazine community today!

Home ›› Things UX People Like ›› From Design Thinking to AI Thinking

From Design Thinking to AI Thinking

by Alipta Ballav
2 min read
Share this post on
Tweet
Share
Post
Share
Email
Print

Save

Traditional Design thinking has laid the foundation for how problems are approached and addressed. It is still considered a valuable tool to address a problem. With the evolution of Generative AI, the focus has shifted towards integrating LLMs into workflows.

Across various sectors, from Agri-tech to Retail, there is a growing interest in developing conversational interfaces to promptly address inquiries. Whether the query is about attire for an event or determining the appropriate fertiliser for specific crops, LLMs are becoming increasingly relevant.

However, amidst this transition, the question arises, where should we begin? Herein lies the importance of an AI thinking process, which can serve as a guiding light.

4 stages of AI thinking

Here are the 4 stages of an AI thinking process explained in detail.

Identify

The first step is to identify use cases. Use cases typically originate from customers, and we need to make a careful consideration if the incorporation of AI can solve the core problem and further enhance the experience. In this step, we also need to figure out how we can leverage LLMs. LLMs can solve multiple problems ranging from language translation, text generation, and question answering to personalised recommendations, and many more. We must determine what specific tasks LLMs can solve and how they can be incorporated into the use case.

Validate

In this step, we need to figure out what is feasible to build. Can we deliver what the client expects? Do we have the required data to build an experience? Is the data good enough to consume? Is LLM capable of delivering what is expected? These questions can be best answered by conducting a POC (Proof of Concept), which is helpful as the experience can be shared with the client to obtain early feedback.

Build

In this step, we build the actual experience, and we fine tune the models to get relevant results. On the other hand, we adhere strictly to RAI (Responsible AI) guidelines. These guidelines ensure that the development process aligns with ethical principles and mitigates potential risks. By following RAI guidelines, we can create an experience that prioritizes transparency, fairness, accountability, and privacy while harnessing the power of AI technology.

Measure

Measuring AI experiences can be based on parameters such as relevance, completeness, accuracy, and recall [1]. This step is considered the most important in the AI thinking process, where the objective is to verify whether the experience can deliver the expected results. There are several popular benchmarks such as GLUE (General Language Understanding Evaluation), BLEU, and ROUGE. We can use these popular metrics or derive one relevant to your use cases.

Reference: [1 ]Debarag Banerjee, Pooja Singh, Arjun Avadhanam, Saksham Srivastava Benchmarking LLM powered Chatbots: Methods and Metrics (2023).

post authorAlipta Ballav

Alipta Ballav
A seasoned Design leader with over 2 decades of industry experience spanning across B2C and B2B working at the intersection of people, process, product.

Tweet
Share
Post
Share
Email
Print
Ideas In Brief
  • The article outlines a paradigm shift from Design Thinking to AI Thinking, emphasizing the integration of LLMs into various sectors to enhance problem-solving through conversational interfaces.

Related Articles

Discover how AI-powered gesture-based navigation is redefining app experiences, making interactions more intuitive and personalized. Explore the opportunities and challenges of this design revolution.

Article by Kevin Gates
Designing Serendipity
  • This article explores the role of AI in enhancing app navigation through gesture-based interactions, emphasizing a shift from traditional menus to intuitive, swipe-driven experiences.
  • It examines the intersection of AI and interaction design, highlighting how machine learning can support user discovery by anticipating needs and surfacing relevant content.
  • The piece critically assesses the potential of gesture-based navigation to improve accessibility, user engagement, and overall app usability, while addressing design challenges and potential pitfalls.
Share:Designing Serendipity
11 min read

Discover how AI is changing UX research. It’s not just making data analysis faster. It’s also encouraging people to think more deeply. Learn how to strike a balance between human insight and AI-driven efficiency to create more thoughtful designs.

Article by Charles Gedeon
How AI and Metacognition Are Shaping UX Research
  • The article talks about how AI can speed up data analysis and encourage people to think more deeply about biases and missed insights, which can improve the quality of user-centered design.
  • It shows that AI-powered UX research tools need to include reflection checkpoints. These checkpoints let researchers critically assess their assumptions and conclusions.
  • The piece highlights the collaboration between AI’s ability to recognize patterns and human judgment to make sure the research outcomes are meaningful and consider the context.
Share:How AI and Metacognition Are Shaping UX Research
4 min read

How can thoughtful workspace design transform collaboration and creativity? Discover how a human-centered approach reimagined 21,940 square feet into a flexible, inspiring environment that employees love.

Article by Aalap Doshi
Rethink Space: Designing a Human-Centered Workspace that Supports Flexibility, Collaboration, Privacy, Innovation, Creativity, and Transparency
  • The article explores how human-centered workspace design can improve collaboration, flexibility, and creativity by addressing employee needs.
  • It highlights solutions like open zones, quiet spaces, and pod-like configurations, showing how these changes boosted teamwork and morale.
  • The piece emphasizes the value of co-creation, adaptability, and clear communication in rethinking office spaces.
Share:Rethink Space: Designing a Human-Centered Workspace that Supports Flexibility, Collaboration, Privacy, Innovation, Creativity, and Transparency
7 min read

Join the UX Magazine community!

Stay informed with exclusive content on the intersection of UX, AI agents, and agentic automation—essential reading for future-focused professionals.

Hello!

You're officially a member of the UX Magazine Community.
We're excited to have you with us!

Thank you!

To begin viewing member content, please verify your email.

Tell us about you. Enroll in the course.

    This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and