Flag

We stand with Ukraine and our team members from Ukraine. Here are ways you can help

Get exclusive access to thought-provoking articles, bonus podcast content, and cutting-edge whitepapers. Become a member of the UX Magazine community today!

Home ›› Things UX People Like ›› From Design Thinking to AI Thinking

From Design Thinking to AI Thinking

by Alipta Ballav
2 min read
Share this post on
Tweet
Share
Post
Share
Email
Print

Save

Traditional Design thinking has laid the foundation for how problems are approached and addressed. It is still considered a valuable tool to address a problem. With the evolution of Generative AI, the focus has shifted towards integrating LLMs into workflows.

Across various sectors, from Agri-tech to Retail, there is a growing interest in developing conversational interfaces to promptly address inquiries. Whether the query is about attire for an event or determining the appropriate fertiliser for specific crops, LLMs are becoming increasingly relevant.

However, amidst this transition, the question arises, where should we begin? Herein lies the importance of an AI thinking process, which can serve as a guiding light.

4 stages of AI thinking

Here are the 4 stages of an AI thinking process explained in detail.

Identify

The first step is to identify use cases. Use cases typically originate from customers, and we need to make a careful consideration if the incorporation of AI can solve the core problem and further enhance the experience. In this step, we also need to figure out how we can leverage LLMs. LLMs can solve multiple problems ranging from language translation, text generation, and question answering to personalised recommendations, and many more. We must determine what specific tasks LLMs can solve and how they can be incorporated into the use case.

Validate

In this step, we need to figure out what is feasible to build. Can we deliver what the client expects? Do we have the required data to build an experience? Is the data good enough to consume? Is LLM capable of delivering what is expected? These questions can be best answered by conducting a POC (Proof of Concept), which is helpful as the experience can be shared with the client to obtain early feedback.

Build

In this step, we build the actual experience, and we fine tune the models to get relevant results. On the other hand, we adhere strictly to RAI (Responsible AI) guidelines. These guidelines ensure that the development process aligns with ethical principles and mitigates potential risks. By following RAI guidelines, we can create an experience that prioritizes transparency, fairness, accountability, and privacy while harnessing the power of AI technology.

Measure

Measuring AI experiences can be based on parameters such as relevance, completeness, accuracy, and recall [1]. This step is considered the most important in the AI thinking process, where the objective is to verify whether the experience can deliver the expected results. There are several popular benchmarks such as GLUE (General Language Understanding Evaluation), BLEU, and ROUGE. We can use these popular metrics or derive one relevant to your use cases.

Reference: [1 ]Debarag Banerjee, Pooja Singh, Arjun Avadhanam, Saksham Srivastava Benchmarking LLM powered Chatbots: Methods and Metrics (2023).

post authorAlipta Ballav

Alipta Ballav
A seasoned Design leader with over 2 decades of industry experience spanning across B2C and B2B working at the intersection of people, process, product.

Tweet
Share
Post
Share
Email
Print
Ideas In Brief
  • The article outlines a paradigm shift from Design Thinking to AI Thinking, emphasizing the integration of LLMs into various sectors to enhance problem-solving through conversational interfaces.

Related Articles

In the Post-UX Era, usability is the baseline. What truly sets products apart now? Emotion, story, and human connection. Discover why the future of design lies not in perfect flows, but in unforgettable experiences.

Article by Nate Schloesser
The Post-UX Era
  • The article argues that UX has matured into a baseline expectation — usable, accessible, and consistent design is no longer a competitive edge but a standard.
  • It introduces the concept of HX (Human Experience), emphasizing emotional connection, identity, and narrative as the new frontier for impactful digital design.
  • Through sharp insights and vivid examples, it urges designers to move beyond flowcharts and functionality and toward crafting experiences that resonate, surprise, and feel human.
Share:The Post-UX Era
7 min read

Discover how breaking down silos and embracing cross-functional collaboration can lead to smarter, more user-centered design — and better products for everyone.

Article by Rodolpho Henrique
Beyond the Design Silo: How Collaboration Elevates UX
  • The article explores how siloed UX design practices can hinder product success and argues for cross-functional collaboration as essential to creating meaningful user experiences.
  • It outlines the benefits of working closely with product managers, engineers, and stakeholders to align user needs with technical feasibility and business goals.
  • The piece provides real-world collaboration examples across research, prototyping, design systems, and accessibility to show how teamwork leads to more innovative and effective UX outcomes.
Share:Beyond the Design Silo: How Collaboration Elevates UX
4 min read

Designing for AI? Know what your agent can actually do. This guide breaks down the four core capabilities every UX designer must understand to build smarter, safer, and more user-centered AI experiences.

Article by Greg Nudelman
Secrets of Agentic UX: Emerging Design Patterns for Human Interaction with AI Agents
  • The article examines how UX designers can effectively work with AI agents by understanding the four key capability types that shape agent behavior and user interaction.
  • It emphasizes the importance of evaluating an AI agent’s perception, reasoning, action, and learning abilities early in the design process to create experiences that are realistic, ethical, and user-centered.
  • The piece provides practical frameworks and examples — from smart home devices to healthcare bots — to help designers ask the right questions, collaborate cross-functionally, and scope AI use responsibly.
Share:Secrets of Agentic UX: Emerging Design Patterns for Human Interaction with AI Agents
10 min read

Join the UX Magazine community!

Stay informed with exclusive content on the intersection of UX, AI agents, and agentic automation—essential reading for future-focused professionals.

Hello!

You're officially a member of the UX Magazine Community.
We're excited to have you with us!

Thank you!

To begin viewing member content, please verify your email.

Tell us about you. Enroll in the course.

    This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and