Flag

We stand with Ukraine and our team members from Ukraine. Here are ways you can help

Get exclusive access to thought-provoking articles, bonus podcast content, and cutting-edge whitepapers. Become a member of the UX Magazine community today!

Home ›› Things UX People Like ›› From Design Thinking to AI Thinking

From Design Thinking to AI Thinking

by Alipta Ballav
2 min read
Share this post on
Tweet
Share
Post
Share
Email
Print

Save

Traditional Design thinking has laid the foundation for how problems are approached and addressed. It is still considered a valuable tool to address a problem. With the evolution of Generative AI, the focus has shifted towards integrating LLMs into workflows.

Across various sectors, from Agri-tech to Retail, there is a growing interest in developing conversational interfaces to promptly address inquiries. Whether the query is about attire for an event or determining the appropriate fertiliser for specific crops, LLMs are becoming increasingly relevant.

However, amidst this transition, the question arises, where should we begin? Herein lies the importance of an AI thinking process, which can serve as a guiding light.

4 stages of AI thinking

Here are the 4 stages of an AI thinking process explained in detail.

Identify

The first step is to identify use cases. Use cases typically originate from customers, and we need to make a careful consideration if the incorporation of AI can solve the core problem and further enhance the experience. In this step, we also need to figure out how we can leverage LLMs. LLMs can solve multiple problems ranging from language translation, text generation, and question answering to personalised recommendations, and many more. We must determine what specific tasks LLMs can solve and how they can be incorporated into the use case.

Validate

In this step, we need to figure out what is feasible to build. Can we deliver what the client expects? Do we have the required data to build an experience? Is the data good enough to consume? Is LLM capable of delivering what is expected? These questions can be best answered by conducting a POC (Proof of Concept), which is helpful as the experience can be shared with the client to obtain early feedback.

Build

In this step, we build the actual experience, and we fine tune the models to get relevant results. On the other hand, we adhere strictly to RAI (Responsible AI) guidelines. These guidelines ensure that the development process aligns with ethical principles and mitigates potential risks. By following RAI guidelines, we can create an experience that prioritizes transparency, fairness, accountability, and privacy while harnessing the power of AI technology.

Measure

Measuring AI experiences can be based on parameters such as relevance, completeness, accuracy, and recall [1]. This step is considered the most important in the AI thinking process, where the objective is to verify whether the experience can deliver the expected results. There are several popular benchmarks such as GLUE (General Language Understanding Evaluation), BLEU, and ROUGE. We can use these popular metrics or derive one relevant to your use cases.

Reference: [1 ]Debarag Banerjee, Pooja Singh, Arjun Avadhanam, Saksham Srivastava Benchmarking LLM powered Chatbots: Methods and Metrics (2023).

post authorAlipta Ballav

Alipta Ballav
A seasoned Design leader with over 2 decades of industry experience spanning across B2C and B2B working at the intersection of people, process, product.

Tweet
Share
Post
Share
Email
Print
Ideas In Brief
  • The article outlines a paradigm shift from Design Thinking to AI Thinking, emphasizing the integration of LLMs into various sectors to enhance problem-solving through conversational interfaces.

Related Articles

Discover how GPT Researcher is transforming the research landscape by using multiple AI agents to deliver deeper, unbiased insights. With Tavily, this approach aims to redefine how we search for and interpret information.

Article by Assaf Elovic
You Are Doing Research Wrong
  • The article introduces GPT Researcher, an AI tool that uses multiple specialized agents to enhance research depth and accuracy beyond traditional search engines.
  • It explores how GPT Researcher’s agentic approach reduces bias by simulating a collaborative research process, focusing on factual, well-rounded responses.
  • The piece presents Tavily, a search engine aligned with GPT Researcher’s framework, aimed at delivering transparent and objective search results.
Share:You Are Doing Research Wrong
6 min read

The role of the Head of Design is transforming. Dive into how modern design leaders amplify impact, foster innovation, and shape strategic culture, redefining what it means to lead design today.

Article by Darren Smith
Head of Design is Dead, Long Live the Head of Design!
  • The article examines the evolving role of the Head of Design, highlighting shifts in expectations, responsibilities, and leadership impact within design teams.
  • It discusses how design leaders amplify team performance, foster innovation, and align design initiatives with broader business goals, especially under changing demands in leadership roles.
  • The piece emphasizes the critical value of design leadership as a multiplier for organizational success, offering insights into the unique contributions that design leaders bring to strategy, culture, and team cohesion.
Share:Head of Design is Dead, Long Live the Head of Design!
9 min read

Discover how digital twins are transforming industries by enabling innovation and reducing waste. This article delves into the power of digital twins to create virtual replicas, allowing companies to improve products, processes, and sustainability efforts before physical resources are used. Read on to see how this cutting-edge technology helps streamline operations and drive smarter, eco-friendly decisions

Article by Alla Slesarenko
How Digital Twins Drive Innovation and Minimize Waste
  • The article explores how digital twins—virtual models of physical objects—enable organizations to drive innovation by allowing testing and improvements before physical implementation.
  • It discusses how digital twins can minimize waste and increase efficiency by identifying potential issues early, ultimately optimizing resource use.
  • The piece emphasizes the role of digital twins in various sectors, showcasing their capacity to improve processes, product development, and sustainability initiatives.
Share:How Digital Twins Drive Innovation and Minimize Waste
5 min read

Join the UX Magazine community!

Stay informed with exclusive content on the intersection of UX, AI agents, and agentic automation—essential reading for future-focused professionals.

Hello!

You're officially a member of the UX Magazine Community.
We're excited to have you with us!

Thank you!

To begin viewing member content, please verify your email.

Tell us about you. Enroll in the course.

    This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and