Flag

We stand with Ukraine and our team members from Ukraine. Here are ways you can help

Get exclusive access to thought-provoking articles, bonus podcast content, and cutting-edge whitepapers. Become a member of the UX Magazine community today!

Home ›› Customer Experience ›› 5 levels of product personalization: an intro to recommender systems

5 levels of product personalization: an intro to recommender systems

by Guillaume Galante
5 min read
Share this post on
Tweet
Share
Post
Share
Email
Print

Save

Personalization can be a powerful tool for engagement. Here are recommender systems.

Personalization can unlock many opportunities within your product, throughout my experience, it proved to be a powerful tool for engagement, increasing customer retention, and can also be beneficial to acquiring new customers.

It’s such an easy concept to give every user exactly what they’re looking for, but behind the curtain, it requires a solid understanding of how recommender systems work to serve highly relevant content to your end-user.

Level 1.1: Work with your copywriters

When speaking about personalization, the bare minimum you can bring with a really low cost is to work closely with your copywriters. A copy can be a powerful tool to bring a more delightful product experience. From a simple “Good morning, Dave!” to giving special deals on your customer’s birthday.

5 levels of product personalization: an intro to recommender systems. Copywriting

Level 1.2: Be creative

Imagery and icons can play a major role in making your product feel more personalized. For example, either having seasonal images (Autumn/Winter/Summer/Fall) or small touches on the icons.

5 levels of product personalization: an intro to recommender systems. Banking by design
5 levels of product personalization: an intro to recommender systems. N26 Bank uses seasonal imagery for their splash screen on apps (Left), Google maps uses different icons based on distances.
N26 Bank uses seasonal imagery for their splash screen on apps (Left), and Google maps use different icons based on distances.

Level 2: User signals

A crucial part of personalizing your product is getting to know your users in the first place. They are endless user signals you might think of, but let’s start with the most common ones:

5 levels of product personalization: an intro to recommender systems. User signals
  • Location: It’s easy to get an approximate location, from less accurate to precise results: currency selected, user device language, sim card info, IP address, wifi name, phone geolocation.
  • Device type and browsers: Depending on your product, knowing if your user is using the desktop web or mobile app experience of your product can be really useful in understanding what your user is looking for. Browsers can also tell a lot, for example, a user on Google Chrome might be more willing to sign-up using Google.
  • User actions: Either pressing the like button on instagram, letting the ads roll on youtube, swiping down on Tiktok or peeking on the last trendy book on Amazon. You have to find within your product these user actions, that can tell you a lot about what your users are interested into.

“There’s 57 signals that Google looks at: where you’re sitting, what computer you’re on, which browser you’re using, … that it uses to personally tailor your personalized results.” Google engineer

Level 3: Content-based filtering

Content-based filtering is the idea behind bucketing your offerings/products into categories. For example, Spotify has a “Disco” or “Rock” category, Netflix has a “Horror” or “Comedy” category, and Amazon has an “Electronics” or “Books” category.

5 levels of product personalization: an intro to recommender systems. Content-based filtering. Recommended.

Spotify uses natural language processing (Natural language processing strives to understand text or voice data) to scrap large amounts of data written in blog posts, articles and discussions about specific artists. It tracks what people have been saying about that artist, what other artists have written and other songs that might be mentioned alongside. System identifies descriptive terms, nouns and phrases and associates them with the specific artist or song.

5 levels of product personalization: an intro to recommender systems. Netflix recommendations

The idea is that if your user engages within one of these categories, you can easily highlight offers that are similar to what your user is looking for. In practice, these systems are easy to implement but don’t allow a high level of personalization and might feel a little static to your end-user.

Cold start problem: when speaking about recommendations, the “cold start” simply means that you do not know enough about your user to provide the best possible result. This is being solved usually within a “preference” onboarding asking users to pick topics they are interested in.

5 levels of product personalization: an intro to recommender systems.

Level 4: Collaborative filtering

Collaborative filtering is the most popular method used in the tech industry. In the context of Netflix services, its purpose is to predict which movies a user might like by looking at what other users who watched this movie also watched. It’s all about highlighting content from users with a similar taste.

5 levels of product personalization: an intro to recommender systems. Collaborative filtering

At this point, it is recommended to partner with a data scientist in order to build recommendation models based on collaborative filtering.

5 levels of product personalization: an intro to recommender systems.
5 levels of product personalization: an intro to recommender systems. The cart

A powerful method as such can be used in many different ways. In the case of Amazon, one way it’s being used is to increase basket sizes by packaging their products with “Customers who bought this item also bought” or “Frequently bought together” sections.

Level 5: “Bandits” models

Bandits are where our learning algorithm can participate in the data collection process, for example, we might recommend something utterly irrelevant if the algorithm has a good reason to believe that it will learn something valuable for its long-term performance.

At Booking.com, there are several reinforcement learning models (such as the Looper and Robin Hood) used to determine the order of UI elements on different areas of the site.

This is really useful if you detect different archetypes (patterns of behavior) within your product. What if you discover your users might be listening to a lot of rock music but also love rap from time to time. This is a problem solved by reinforcement learning by detecting user behavior changes. It can also allow you to be more context and time-aware by seeing if your user might want different things in different contexts.

5 levels of product personalization: an intro to recommender systems. “Bandits” models

The Spotify home screen is organized in rows of playlists which Spotify calls “shelves” and playlists inside those shelves called “cards”. Each shelf has a theme that describes the content of them like “Made for you” or “Inspired by your recent listening”. BaRT’s (Bandits for Recommendations as Treatments) task is to rank cards in shelves and to rank shelves themself. To do that BaRT is using Multi-armed bandit algorithms.

4 things to keep in mind!

  1. Data processing and usage is a sensitive topic, it is highly recommended to involve your legal department in all these conversations, together with having an eye on being GDPR compliant.
  2. Biases are everywhere. Make sure to constantly remind your team of them. Diversity makes us stronger, so make sure to get people with different opinions and cultural background in your team.
  3. Filter Bubble: Recommendations can narrow down users into a single thread of ideas or products. Be careful to regularly highlight different opinions or ideas to your user. If you want to learn more, I recommend this great talk from Eli Pariser.
  4. Allow user to give feedback on your recommendations, from thumbs up/down vote for any recommendation to simply being able to remove a suggestion, this will bring huge insights to your team in understanding what can be improved and where.

post authorGuillaume Galante

Guillaume Galante
I’m a human-centered designer based in Berlin. I design strategies, services and experiences with a passion for problem solving. I’m excited about personalisation, data science and system-thinking. More on: http://guillaumegalante.com

Tweet
Share
Post
Share
Email
Print
Ideas In Brief
  • Personalization is a powerful tool for engagement, increasing customer retention and beneficial to acquiring new customers.
  • When working with personalization:
    • Work with your copywriters and be creative
    • Watch user signals
    • Filter content
    • Create collaborative filtering
    • Practice “Bandits” models

Related Articles

Discover how digital twins are transforming industries by enabling innovation and reducing waste. This article delves into the power of digital twins to create virtual replicas, allowing companies to improve products, processes, and sustainability efforts before physical resources are used. Read on to see how this cutting-edge technology helps streamline operations and drive smarter, eco-friendly decisions

Article by Alla Slesarenko
How Digital Twins Drive Innovation and Minimize Waste
  • The article explores how digital twins—virtual models of physical objects—enable organizations to drive innovation by allowing testing and improvements before physical implementation.
  • It discusses how digital twins can minimize waste and increase efficiency by identifying potential issues early, ultimately optimizing resource use.
  • The piece emphasizes the role of digital twins in various sectors, showcasing their capacity to improve processes, product development, and sustainability initiatives.
Share:How Digital Twins Drive Innovation and Minimize Waste
5 min read

Discover how venture capital firms are shaping the future of product design — and why experienced design leaders need to be consulted to ensure creativity and strategy aren’t left behind. This article delves into the power VCs hold in talent acquisition and team dynamics, highlighting the need for a collaborative approach to foster true innovation.

Article by Darren Smith
How Venture Capital Firms Are Shaping the Future of Product Design, & Why Design Leaders Need to Be Part of the Solution
  • The article explores how venture capital (VC) firms shape product design by providing startups with critical resources like funding, strategic advice, and network access, but often lack an understanding of design’s strategic value.
  • It discusses the impact of VC-led hiring practices in design, which can lead to misaligned job roles, undervalued design leadership, and teams focused more on output than innovation.
  • The piece calls for a collaborative approach where design leaders work alongside VCs in talent acquisition and strategic planning, establishing design as a key partner to drive product innovation and long-term brand success.
Share:How Venture Capital Firms Are Shaping the Future of Product Design, & Why Design Leaders Need to Be Part of the Solution
8 min read

Discover the journey of design systems — from the modularity of early industrial and printing innovations to today’s digital frameworks that shape user experiences. This article reveals how design systems evolved into powerful tools for cohesive branding, efficient scaling, and unified collaboration across design and development teams. Dive into the history and future of design systems!

Article by Jim Gulsen
A Brief History of Design Systems. Part 1
  • The article offers a historical perspective on design systems, tracing their origins from early modularity concepts in industrial design to the digital era, where they have become essential for consistent user experiences.
  • It highlights the evolution of design systems as organizations sought ways to streamline UI and UX elements, allowing teams to maintain cohesive branding while speeding up development.
  • The piece draws parallels between the development of design systems and pivotal moments in history, especially in print technology, where breakthroughs transformed access and consistency. These precedents show how modern design systems evolved into essential tools for business value.
  • It emphasizes how modern design systems empower teams to scale efficiently, fostering a shared language among designers and developers, and promoting a user-centered approach that benefits both businesses and end-users.
Share:A Brief History of Design Systems. Part 1
16 min read

Join the UX Magazine community!

Stay informed with exclusive content on the intersection of UX, AI agents, and agentic automation—essential reading for future-focused professionals.

Hello!

You're officially a member of the UX Magazine Community.
We're excited to have you with us!

Thank you!

To begin viewing member content, please verify your email.

Tell us about you. Enroll in the course.

    This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and