Flag

We stand with Ukraine and our team members from Ukraine. Here are ways you can help

Get exclusive access to thought-provoking articles, bonus podcast content, and cutting-edge whitepapers. Become a member of the UX Magazine community today!

Home ›› Why AI Scaffolding Matters More than Use Cases

Why AI Scaffolding Matters More than Use Cases

by Josh Tyson
1 min read
Share this post on
Tweet
Share
Post
Share
Email
Print

Save

Most organizations are getting AI adoption backwards. Instead of building the foundational scaffolding that makes AI agents work at scale, they chase flashy “big” use cases and set themselves up for failure. In this episode of Invisible Machines, Erika Flowers, who led NASA’s AI Readiness Initiative and has advised Meta, Google, Netflix, and Intuit, joins Robb and Josh for a frank and funny conversation about what’s broken in enterprise AI adoption. 

Organizations often overlook the agent runtime, the infrastructure that allows AI to function reliably across real-world operations. Without it, projects stall, budgets are wasted, and innovation is delayed. Erika shares why most AI initiatives fail before they even reach production and why organizational gaps, not the technology itself, are usually the culprit.

The discussion also looks ahead to a “post-software” era, where AI agents and runtime environments transform enterprise operations. Erika offers practical strategies for moving AI projects from pilot to production, emphasizing human-centered design, rapid iteration, and sustainable deployment.

This insightful conversation dismantles myths about the “big sexy AI use case” while giving leaders, designers, and product teams actionable guidance.

Listen now to discover why AI scaffolding matters and how to close organizational gaps to thrive in a post-software world.

post authorJosh Tyson

Josh Tyson
Josh Tyson is the co-author of the first bestselling book about conversational AI, Age of Invisible Machines. He is also the Director of Creative Content at OneReach.ai and co-host of both the Invisible Machines and N9K podcasts. His writing has appeared in numerous publications over the years, including Chicago Reader, Fast Company, FLAUNT, The New York Times, Observer, SLAP, Stop Smiling, Thrasher, and Westword. 

Tweet
Share
Post
Share
Email
Print

Related Articles

Explore how design researchers can earn the trust and buy-in that give studies impact, even as AI shifts how teams work.

Article by Sara Fortier
Earning the Right to Research: Stakeholder Buy-In and Influence in the AI x UX Era
  • The article emphasizes that synthetic data and AI tools promise speed, but not the alignment or shared purpose that makes design research effective in solving design problems.
  • It asserts that meaningful human-centred design begins with trust and the permission to conduct research properly (i.e., strategically).
  • The piece outlines how to build stakeholder buy-in for design research through practical strategies that build influence piece by piece within an organization.
  • Adapted from the book Design Research Mastery, it offers grounded ways to enable impactful user studies in today’s AI-driven landscape.
Share:Earning the Right to Research: Stakeholder Buy-In and Influence in the AI x UX Era
12 min read

Explore the future of design: AI-powered interfaces that adapt, stay human-focused, and build trust.

Article by Aroon Kumar
Beyond UI/UX: Designing Adaptive Experiences in the Age of AI
  • The article discusses the shift from fixed interfaces to real-time experiences, switching the role of designers from creating screens to guiding how systems operate.
  • The piece also stresses that, as experiences become personalized, they must maintain user trust, privacy, and authentic human connection.
Share:Beyond UI/UX: Designing Adaptive Experiences in the Age of AI
5 min read

Uncover the AI-driven future of product management, where execution is automated and staying close to the market is key.

Article by Pavel Bukengolts
The AI-First Operator Is the New Product Manager
  • The article explores how AI tools such as Startup.ai and Ideanote are turning ideas into products, minimizing the need for traditional project management jobs.
  • It stresses that success in product management today depends on staying close to present market signals rather than coordinating or interpreting concepts.
  • The piece highlights that the future belongs to quick thinkers: AI prioritizes ideas over resumes, leveling the playing field for innovators everywhere.
Share:The AI-First Operator Is the New Product Manager
3 min read

Join the UX Magazine community!

Stay informed with exclusive content on the intersection of UX, AI agents, and agentic automation—essential reading for future-focused professionals.

Hello!

You're officially a member of the UX Magazine Community.
We're excited to have you with us!

Thank you!

To begin viewing member content, please verify your email.

Get Paid to Test AI Products

Earn an average of $100 per test by reviewing AI-first product experiences and sharing your feedback.

    Tell us about you. Enroll in the course.

      This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and