The Community Of Over 578,000

Home ›› Customer Experience ›› The CX Power Couple: Why Customer Feedback and Analytics Must Both Inform Product Design

The CX Power Couple: Why Customer Feedback and Analytics Must Both Inform Product Design

by Tobias Komischke
Share this post on
Share on twitter
Tweet
Share on linkedin
Share
Share on facebook
Post
Share on reddit
Share
Share on email
Email
Share on print
Print

Save

How to gain customer insights? Is it enough to collect analytics to understand customer behaviour? What should you run first – analytics or customer feedback? Continue to read to clear out all the remaining doubts on whether analytics and feedback should be employed simultaneously or separately.

Steve Jobs famously said that to be successful, you’ve got to start with the customer experience and work backwards to the technology. Customer experience is all about understanding customer needs — and addressing those needs with products and services.

How do you gain customer insights? Two basic approaches are gathering feedback by asking questions and collecting direct usage data from customers engaging with products or services.

Both approaches have their strengths and their limitations. Interviews and surveys provide attitudinal data (what people say) and analytics yield behavioral data (what people do). The real power lies in their combination.

Want to Learn About Customers? Ask Them What You Want to Know

Yes, it really can be that straightforward.

Traditional customer feedback approaches like interviews and surveys are best for when you want to dig deep into people’s perspectives and motives around past, present and future scenarios: “What happened when …?” “What do you think about …?” And “Imagine if .…”

Directly asking these types of questions is how you understand the why — or the root causes behind their actions or preferences, expectations and objectives.

But what people say and what they do are not always the same.

The decisions customers make are often instinctive or subconscious rather than conscious and deliberate, so when they’re asked to describe the “why” behind them, their answers can be more of an interpretation of their own actions, rather than the actual motive behind them. In other words: people don’t always know why they do what they do.

It can also be difficult for people to imagine future scenarios or product features and provide an accurate assessment of how they might interact with them and why.

To offset these challenges, include a mix of closed and open-ended questions. (Surveys naturally tend to have more closed questions than conversational interviews do.) The resulting data will be both structured and unstructured. Structured data tends to be quantitative and can be directly processed by software to derive insights through counts and other descriptive statistics. Unstructured data has no predefined format or organization and therefore needs to be further processed in order to derive conclusions, e.g. through a structured method like qualitative analysis.

Use Analytics to Understand What Customers Did — and What They Might Do

When customers engage with a product or service, they leave marks. For example, when a customer uses software, we can track and trace his navigation through the various screens, how long he stayed on each screen, what strings he entered into a search field, etc. The resulting data is typically structured.

The focus of analytics is to understand what customers do through investigating objective usage data, though it’s not always (or even usually) clear why customers behaved a certain way from telemetric data alone. Say, for instance, a user lingered on a screen without any interaction and then shut down the software. Is it because she didn’t know what to do on that screen and got frustrated? Or was it because she interrupted by something that she needed to draw her attention to? Or was it that her power ran out?

Because analytics report on customer behavior that already happened, its focus is on the past. Yet, historic data can be used to predict future behavior. Machine learning techniques like Markov chains or Sequential Pattern Discovery using Equivalence classes (SPADE) allow the prediction of navigation steps.

Recurrent neural networks or Seasonal Auto-Regressive Integrated Moving Average models allow to predict time series events from past data.

When Feedback and Analytics Join Forces

It’s probably clear by now why these two forms of insights must work in tandem to intelligently inform customer experience decisions during the product design process.

There are three primary ways to unite this CX power couple for maximum insight, and each approach can benefit customer experience design in different ways:

1. Run customer feedback efforts and usage analytics simultaneously. A primary benefit of this approach is that it allows you to analyze insights from both data sources with a focus on identifying commonalities and discrepancies.

Commonalities are findings that are backed up by both customer sentiment and usage data (e.g., what a customer says she did matches up with what she actually did), while discrepancies are findings that are in conflict.

An example of a discrepancy is when a user says in an interview that she only rarely navigates to a certain module in a software product, but the analytics data shows that she visits that module quite frequently.

Identifying this type of contradiction should inform a follow-up round of feedback to further investigate the disconnect.

2. Run analytics first to discover usage patterns. What do customers do? What are their navigation paths? What screens do they spend their time on? Gathering this type of data first lets you determine which usage patterns you want to understand in more depth in during the feedback  gathered process. Sample questions informed by these usage patterns might be: Why do they navigate the way they do? Does the organization of screens fit their needs? How could it be improved?

3. Carry out feedback first to uncover themes in customer attitudes, expectations and objectives. This approach is great for determining whether people will behave the way they say — or predict — they will. For example, a customer might say that when he is using a content management system to find a certain piece of information, he is fine following a navigation path that you have identified has more steps than necessary and is therefore no longer optimal. In his mind, his chosen path makes more sense to him, so he’s fine taking the extra steps.

Reviewing analytics data about his usage afterwards allows you to verify whether he indeed tends to choose the non-optimal path rather than adopting the new one, or if he — who is being viewed as a proxy for other users — will naturally adopt the new path over time.

The more angles at which you can look at your customers, the better. After all, if not even your customers know why they do what they do, it’s unlikely that you’ll be able to predict what they’ll respond to best without doing your data due diligence.

post authorTobias Komischke

Tobias Komischke, Tobias Komischke, PhD, is a UX Fellow at Infragistics, Inc., where he leads data analytics, artificial intelligence and machine learning initiatives. An evangelist for user- and customer-centered design strategy, methods and processes, Dr. Komischke has worked in User Experience for over 20 years, leading teams, projects, and programs with the goal of creating meaningful user experiences. He is also an adjunct professor at Rutgers University, teaching UX Design in the Graduate Degree Program.

Share on twitter
Tweet
Share on linkedin
Share
Share on facebook
Post
Share on reddit
Share
Share on email
Email
Share on print
Print
Ideas In Brief

Customer feedback provides attitudinal data and analytics provides behavioral data. Both are necessary to obtain a comprehensive view of customer experience. Here are some tips on using these together to inform customer experience:

  • Be careful when asking users directly about their experience – they might find it difficult to accurately describe their behavior.
  • Keep in mind that analytics that are focused on historic data don’t provide information on why a user took a certain decision.

Read the full article to learn more about how customer feedback and analytics work together, with three clear strategies for implementing them to improve customer experience.

Related Articles

Building digital products for the web’s next billion users
  • Connectivity issues are further inflated by accessibility gaps. This, in turn, undermines user experience and creates obstacles for the wider use of digital products.
  • When designing for users, it’s worth considering such issues as poor connectivity, accessibility constraints, levels of technological literacy within different countries and cultural barriers.
  • In order to satisfy the needs of the next 3 billion users, it’s vital to build inclusive and accessible products that will provide solutions to the critical problems the next generation will face.
Share:Building digital products for the web’s next billion users
The Liminal Space Between Meaning and Emotion
  • To innovate well is to search for meaning behind the innovation first. This requires investing time into discovering what users need and think of unique ways to serve them and better solve their problems.
  • Emotions are widely misunderstood in UX design and often manipulation is used to predict user behavior. However, a much better approach to UX design is storyscaping, which aims at empowering users, rather than controlling them.

Read the full article to learn more about liminal space and how to apply this thinking to your design.

Share:The Liminal Space Between Meaning and Emotion

Stop frustrating your users. Invest in notification strategy instead.

The UX of Notifications | How to Master the Art of Interrupting
  • As part of UX, notifications are key to leading the user to a better interaction with the product. Therefore, notification strategy should have a central role in UX design.
  • A good starting point is to create a user’s journey map and identify major pain points. This should serve to understand when and where notifications might be of help, rather than create confusion.
  • It’s a good practice to use a variety of notifications and provide the user with opt-outs so they don’t feel overwhelmed.
Share:The UX of Notifications | How to Master the Art of Interrupting

This website uses cookies to ensure you get the best experience on our website. Check our privacy policy and