
145

CHAPTER

20 Self-Revealing Gestures

 The best way to teach somebody something is to have them think they’re learning
something else.

 —Prof. Randy Pausch, “The Last Lecture”

 DESCRIPTION
 Self-revealing gestures are a philosophy for design of gestural interfaces that pos-
its that the only way to see a behavior in your users is to induce it (afford it, for
the Gibsonians among us). Users are presented with an interface to which their
response is gestural input. This approach contradicts some designers’ apparent
assumption that a gesture is some kind of “shortcut” that is performed in some
ephemeral layer hovering above the user interface. In reality, a successful develop-
ment of a gestural system requires the development of a gestural user interface .
Objects are shown on the screen to which the user reacts, instead of somehow intu-
iting their performance. The trick, of course, is to not overload the user with UI
“chrome” that overly complicates the UI, but rather to afford as many suitable ges-
tures as possible with a minimum of extra on-screen graphics. To the user, she is
simply operating your UI, when in reality, she is learning a gesture language.

 APPLICATION TO NUI
 A common immediate reaction to a high-bandwidth, multi-fi nger input device is
to imagine it as a gestural input device. Those of us in the business of multi-touch
interface design are often confronted with comparisons between our interfaces
and the big-screen version of MIT student John Underkoffl er’s Ph.D. work: Minority
Report. The comparison is fun, but it certainly creates a challenge—how do we
design an interface that is as high-bandwidth as has been promised by John and oth-
ers, but that users are able to immediately walk up to and use? The approach taken
by many designers is to try to map a system’s functionality onto the set of gestures

CH020.indd 145CH020.indd 145 2/1/2011 5:50:13 PM2/1/2011 5:50:13 PM

146 CHAPTER 20 Self-Revealing Gestures

 a user is likely to fi nd intuitive. Of course, the problem with such an approach is
immediately apparent: The complexity and vocabulary of the input language are
bounded by your least imaginative user.

 At a more fundamental level, the goal of providing natural and intuitive gestures
that are simultaneously complex and rich seems to contain an inherent contradic-
tion. How can something complex be intuitive? What we have found in practice
is that to achieve our goal of an interface that feels natural to its users, we must
actually provide them with a UI. The trick, of course, is to do so in a way that is
minimally intrusive and that makes it seem to the user as if she is “discovering” the
gestures. To this, we will apply many of our design principles, the most salient of
which we described in Chapter 10: we will scaffold our user experience.

 LESSONS FROM THE PAST: CONTROL VS. ALT HOTKEYS
 For a little fun (and perhaps some disillusionment), make an appointment at your
local Genius Bar at an Apple store and bring along your OSX-based computer.
When it’s your turn, kindly ask the genius, “I can’t fi gure out how to use this
computer—can you please show me the basics?” As they reach for the trackpad,
gently correct them—”Sorry, I meant how to use it using only the keyboard.”

 It is interesting how devotees to one OS or the other can take on a religious zeal
about their choice. In truth, there are very few instances where someone with HCI
training can point to a clear winner in the Mac OS vs. Windows debate. Different
elements of each have merit. But one instance where Windows is the clear, indis-
putable winner is in the way hotkeys are designed and taught. In this lesson from
the past, we will examine the Windows approach to hotkeys and take away a clear
understanding of the merits of the approach.

 Many users never notice that, in Microsoft Windows, there are two completely
redundant hotkey languages. These languages can be broadly categorized as the Control
and Alt languages. It is from comparing and contrasting these two hotkey languages that
we draw some of the most important lessons necessary for self-revealing gestures.

 Control Hotkeys and the Gulf of Competence
 We consider fi rst the most-used hotkey language: the Control language. Although the
particular hotkeys are not the same on all operating systems, the notion of the con-
trol hotkeys is standard across many operating systems: we assign some modifi er key
(Function, Control, Apple, Windows), putting the rest of the keyboard into a mode.
The user then presses a second (and possibly third) key to execute a function. Many
users know a couple of these hotkeys—such as CTRL � X to cut and CTRL � C to
copy (APPLE � X on a Mac, but recall we’re talking about Windows here). What inter-
ests us is how a user learns this key combination.

 Control hotkeys generally rely on two mechanisms to allow users to learn
them. First, the keyboard keys assigned to their functions are often lexically

CH020.indd 146CH020.indd 146 2/1/2011 5:50:13 PM2/1/2011 5:50:13 PM

147Lessons from the Past: Control vs. Alt Hotkeys

 intuitive: CTRL � P � print, CTRL � S � save, and so on. Figure 20.1 shows some
hotkeys from the Notepad application.

 Relying on intuitiveness works well for a small number of keys , but it breaks
down quickly—if CTRL � C means “copy,” then what is the hotkey for “center”?
This is roughly parallel to the naïve designer’s notion of gesture mappings: we
map the physical action to some property in its function (if we want “help,” draw
a question mark!). However, we quickly learn that this approach does not scale:
Frequently used functions may overlap (consider “copy” and “cut”). This gives rise
to shortcuts such as CTRL � H for “fi nd next” (CTRL � R is “center”, in case you
were racking your brain). We also note the use of function keys as CTRL short-
cuts—even though they don’t actually use the CTRL key, they are still notionally
CTRL shortcuts, as we shall see.

 Because intuitive mappings can take us only so far, the menu provides the sec-
ond mechanism for hotkey learning : the functions in the menu system are labeled
with their hotkey invocation. This approach is a reasonable one. We provide users
with an in-place help system labeling functions with a more effi cient means of exe-
cuting them. However, a sophisticated designer must ask themselves, “What does
the transition from novice to expert look like?”

 In the case of Control shortcuts, the novice-to-expert transition requires a leap
on the part of the user: we ask her to fi rst learn the application using the mouse,
pointing at menus and selecting functions spatially. To become a power user, she
must then make the conscious decision to stop using the menu system and begin
to use hotkeys. When the user makes this decision, it will at fi rst come at the cost
of a loss of effi ciency, as she moves from being an expert in one system, the mouse-
based menus, to being a novice in the hotkey system. We term this cost the gulf of
competence . The graph in Figure 20.3 demonstrates this idea—at the time that the
user tries to switch from mouse to keyboard, she slows down.

 FIGURE 20.1

 The Control hotkeys are shown in the File menu in Notepad. Note that the key choices are
selected to be intuitive (by matching the fi rst letter of the function name).

CH020.indd 147CH020.indd 147 2/1/2011 5:50:13 PM2/1/2011 5:50:13 PM

148 CHAPTER 20 Self-Revealing Gestures

 The gulf of competence is easily anticipated by the user: He may know that hot-
keys are more effi cient, but they will take time to learn. We are asking a busy user
to take the time to learn the interface. The gulf of competence is a chasm too far for
most users. Only a small set ever progress beyond the most basic control hotkeys,
forever doomed to the ineffi cient world of the WIMP. Thankfully, we have a hotkey
system that is far easier to learn: the Alt hotkeys.

 FIGURE 20.3

 The learning curve of Control hotkeys: The user fi rst learns to use the system with the mouse.
They he must consciously decide to stop using the mouse and begin to use shortcut keys. This
decision comes at a cost in effi ciency as he begins to learn an all-new system. This cost is the
“gulf of competence.”

 FIGURE 20.2

 The Control hotkeys are shown in the Edit menu in Notepad. The fi rst-letter mapping is lost in
favor of physical convenience (CTRL � V for paste) or name collisions (F3 for fi nd next—yes, F3
 is a Control hotkey under our defi nition, which will be more clear soon).

CH020.indd 148CH020.indd 148 2/1/2011 5:50:14 PM2/1/2011 5:50:14 PM

149Lessons from the Past: Control vs. Alt Hotkeys

 Alt Hotkeys and the Seamless Novice-to-Expert Transition
 While the Control hotkeys rely on either intuition or the willingness to jump the
gulf of competence, a far more learnable hotkey system exists in parallel that
addresses both of these limitations: the Alt hotkey system. Like any hotkey system,
the Alt approach modes the keyboard to provide a hotkey. Unlike the Control keys,
however, on-screen graphics guide the user in performing the key combination
(Figure 20.4).

 Because the Alt hotkeys guide the novice user, there is no need for the user to
make an input device change: He doesn’t need to navigate menus fi rst with the
mouse, then switch to using the keyboard once he has memorized the hotkeys. Nor
do we rely on user intuition to help them to “guess” Alt hotkeys.

 The Alt hotkey system is a self-revealing interface, because there is no need for
a help system or instructions—the actions are simply shown and followed. Better
yet, the physical actions of the user are the same as the physical actions of an expert
user—both press ALT � F � O to open a fi le. There is no gulf of competence. In
applying this lesson to the gesture space, there is a highly relevant piece of work
that should be examined in detail: marking menus.

 Marking Menus: The First Self-Revealing Gestures
 Marking “menu” is a bit of misnomer—it’s not actually a menu system at all. In
truth, the marking menu is a system for teaching pen gestures. For those not
familiar with them, marking menus are intended to allow users to make gestural
“ marks” in a pen-based system. The pattern of these marks corresponds to a par-
ticular function. For example, the gesture shown in Figure 20.5 (right) leads to an
“undo” command. The system does not rely at all on making the marks intuitive .
Instead, marking menus provide a hierarchical menu system (left in Figure 20.5).
Users navigate this menu system by drawing through the selections with the pen.

 FIGURE 20.4

 A novice Alt hotkey user’s actions are exactly the same as an expert’s: no gulf of competence.
On-screen graphics guide the novice user in performing an Alt hotkey operation. Left: The menu
system. Center: The user has pressed “Alt.” Right: The user has pressed “F” to select the menu.

CH020.indd 149CH020.indd 149 2/1/2011 5:50:15 PM2/1/2011 5:50:15 PM

150 CHAPTER 20 Self-Revealing Gestures

As they become more experienced, users do not rely on visual feedback, and even-
tually transition to interacting with the system through gestures, and not through
the menu. It’s important to understand that there is no difference in the software
between novice and expert “modes”—the user simply uses the system faster and
faster. Because there is a 200 ms delay between the time the pen comes down and
when the menu becomes visible, novices declare themselves by doing exactly what
comes naturally—hesitating.

 Just like the Alt menu system, the physical actions of the novice user are physi-
cally identical to those of the expert. There is no gulf of competence, because there
is no point where the user must change modalities and throw away all his prior
learning. So how can we apply this to multi-touch gestures?

 DESIGN GUIDELINES
 Self-Revealing Multi-Touch Gestures
 So it seems someone else has already done some heavy lifting regarding the creation
of a self-revealing gesture system. Why not use that system and call it a day? Well, if
we were willing to have users behave with their fi ngers the way they do with a pen,
we’d be done. But the promise of multi-touch is more than a single fi nger drawing
single lines on the screen. For all of the reasons we described in Chapter 18 and

 FIGURE 20.5

 The marking menu system (left) teaches users to make pen-based gestures (right).

CH020.indd 150CH020.indd 150 2/1/2011 5:50:15 PM2/1/2011 5:50:15 PM

151Design Guidelines

throughout the book, we need to do better. We must consider: what would a multi-
touch self-revealing gesture system look like?

 First, we should recall from Chapter 18 the stages of a gesture. A gesture consists
of three stages: registration , which sets the type of gesture to be performed, con-
tinuation , which adjusts the parameters of the gesture, and termination , which is
when the gesture ends (Figure 20.6).

 In the case of pen marks, registration is the moment the pen hits the tablet, con-
tinuation happens as the user makes the marks for the menu, and termination occurs
when the user lifts the pen off the tablet. Seems simple enough. When working with
a pen, the registration action is always the same: the pen comes down on the tablet.
The marking menu system kicks in at this point, and guides the user’s continuation of
the gesture—and that’s it. The trick in applying this technique to a multi-touch system
is that the registration action varies: it’s almost always the hand coming down on the
screen, but the posture of that hand is what registers the gesture. On Microsoft Surface,
these postures can be any confi guration of the hand. Putting a hand down in a Vulcan
salute could map to a different function than putting down three fi ngertips, which is
different again from a closed fi st. On less-enabled hardware, such as that supported by
Windows 7 or the iOS, the variation is limited to some combination of the relative posi-
tion of multiple fi ngertip positions. Chapter 25 describes this in detail. Nonetheless, the
problem is the same. We now need to provide a self-revealing mechanism to afford a
 particular initial posture for the gesture, because this initial posture is the registration
action that modes the rest of the gesture. Those marking menu guys had it easy, eh?

 But wait—it gets even trickier.
 In the case of marking menus, the on-screen affordance was needed only for the

continuation phase, and it would pop up around the pen following registration. On
a multi-touch system, because we have to give affordances before the registration
phase, we need to tell the user which posture to go into before the user touches the
screen. With nearly all of the multi-touch hardware on the market today, the hand is
out of range right up until it touches the screen (see Chapter 15).

 FIGURE 20.6

 The three stages of gestural input and the physical actions that lead to them on a pen or touch
system, as we described in Chapter 18. OOR is “out of range” of the input device.

CH020.indd 151CH020.indd 151 2/1/2011 5:50:16 PM2/1/2011 5:50:16 PM

152 CHAPTER 20 Self-Revealing Gestures

 One must consider affording each of the registration and continuation phases (the
termination phase, which is almost always lifting the hand from the device, more or
less affords itself). As you will learn in Chapter 27, there is no such thing as a “natural
gesture,” with the exception of moving things from one place to another, or “direct
manipulation.” A successful self-revealing gesture system will utilize this to afford
actions, similar to the marking menu. Users of marking menus don’t need tutorials. It
was obvious: select things by tracing over them with the pen. Similarly, physical meta-
phors (things that slide, things that can be dragged, rolled, etc.) all afford movement.

 An approach we advocate is one that we have dubbed “just-in-time chrome,”
which we present publicly here for the fi rst time. To understand it, let’s begin by
proposing a gesture to stretch a photo in one of its dimensions. It goes like this:
touch the photo with one hand, then touch the border of the photo with a second
hand, stretch the hands apart, and lift (Figure 20.7).

 This gesture is almost impossible to guess (we tested it with dozens of users). Many
had experience enlarging pictures on iPhones, but the idea that they needed to put

 FIGURE 20.7

 A theoretical gesture sequence for resizing a photo: Touch with one fi nger, then add another at
the border, pull them apart, and lift.

CH020.indd 152CH020.indd 152 2/1/2011 5:50:17 PM2/1/2011 5:50:17 PM

153Design Guidelines

their fi ngers in a particular location to stretch the photo horizontally wasn’t guessed.
But if we add just-in-time chrome, the sequence looks like that shown in Figure 20.8 .

 This gesture, in contrast, is incredibly easy to guess. The participants in our
experiments got it right away, almost every time.

 Just-in-time chrome begins with the assumption that there is an action that the user
can perform that will tell the system where and what she wants to engage with. In the
case above, the UI is shown only when the user touches the photo. To avoid the gulf
of competence, the gesture must therefore also begin with a single fi nger touching
the photo. The basic intuition here is to let the user touch the screen to tell us where
it is she wants to perform the gesture. Next, show on-screen affordances for the avail-
able postures and their functions, and allow the user to register the gesture with a sec-
ond posture, in approximately the same place as the fi rst. From there, have the user
perform manipulation gestures with the on-screen graphics, since, as we learned oh-
so-many paragraphs ago, manipulation gestures are the only ones that users can learn
to use quickly and are the only ones that we have found to be truly “natural.”

 These affordances are obvious for the continuation phase, but less so for registra-
tion. To address registration affordances, we recommend using the hover state of

 FIGURE 20.8

 The same gesture sequence as above, this time with just-in-time chrome to help the user along.

CH020.indd 153CH020.indd 153 2/1/2011 5:50:18 PM2/1/2011 5:50:18 PM

154 CHAPTER 20 Self-Revealing Gestures

your hardware (see Chapter 15), if you’ve got one. If you don’t, then reserve a one-
fi nger tap as a “I need more information” gesture. Thanks to decades of mouse use,
this is the fi rst action that users always take when they are trying to fi gure out what
to do. An example of this is shown in Figure 20.9 .

 Just-in-time chrome is just one method of making your gestural interface self-
revealing. The key is to consider affording registration actions as well as con-
tinuation actions. An alternative approach was investigated by Freeman and his
colleagues at Microsoft: putting a layer of help on top of your application to afford
both registration and continuation. While we don’t particularly advocate for this
approach in general, it is worth considering for certain applications.

 Must
 ● Never rely on an action being “natural” (a.k.a. “guessable”). It’s not.

 ● The only exception to the above is “direct manipulation”—users can and will
guess to grab something and move it somewhere else.

 ● For gestures, present objects on-screen to which users respond.

 ● Utilize direct manipulation as an on-screen affordance in all cases. Want to
afford the user putting their hand down in a Vulcan salute? Put a Vulcan-salute
shaped button on the device for them to touch.

 Should
 ● Re-use similar visual affordances to afford the same gestures over and over

again. This is commonly known as a “user interface.”

 ● Consider affording both registration and continuation phases of the gesture.
This is a “should” only because your gesture system may have only one registra-
tion action, such as landing a single fi nger on the device.

 FIGURE 20.9

 UI affordances are shown on tap. The user is told to put down one fi nger to resize the photo or
two fi ngers to scroll or zoom. Whatever mechanism you use, applying the principle of scaffolding
and the lessons of these earlier attempts at self-revealing user interfaces will lead you to far more
successful multi-touch and gesture UI’s.

CH020.indd 154CH020.indd 154 2/1/2011 5:50:18 PM2/1/2011 5:50:18 PM

155Summary

 Could
 ● Use hover capabilities of your input device (if present) to preview available

actions before the user actually comes in contact with the display.

 ● Think about teaching more gestures over time. Consider how to layer your
user interface in the same way game designers layer functionality over time.

 SUMMARY
 The biggest problem with making your gestures self-revealing is getting over the
idea that gestures are somehow natural or intuitive. We have seen over and over
again that users cannot and will not guess your gesture language. To overcome this,
put UI affordances on the screen to which they can react.

 UNNATURAL USER INTERFACES
 Gord Kurtenbach
 Autodesk

 I often give a lecture entitled “un-natural user interfaces.” This particular title is a setup to make
people think I’m going to speak about examples of bad, “unnatural” user interfaces and how
we need to design them to be more natural and intuitive. However, the surprise and hopefully
entertaining twist of the lecture is that I claim there is no such thing as natural or intuitive
interfaces. Effective user interface design is very carefully controlled skill transfer—we design
interfaces so users can take their skills from one situation and re-apply them to a new situation.
The classic example is the computer desktop. Users who are new to computers transfer their
existing skills with the manipulation of real physical fi les and folders to the computer realm. It
can be argued that moving around physical fi les is “natural,” but that too is a learned skill—
remember playing with blocks as a child? Consider another more “unnatural” example: Suppose
we have software A, which new users fi nd very diffi cult and unintuitive to learn, but it has been
 learned and is used by a large population of users. Software B copies A’s interface style, hotkeys,
etc. The result is that users of A can easily learn to operate B because the interface is familiar. In
other words, they transfer their skills with A over to B. Learning software A from scratch did not
feel natural or intuitive, but once learned, transferring those skills makes learning B “natural and
intuitive.” Nice trick!

 This chapter describes how this fundamental and powerful concept of skill transfer applies to
gesture input. Gesture input holds the potential of being vastly expressive, especially combined
with multi-touch. However, without some sort of mechanism to help users learn these complex
interactions, these interactions become as diffi cult as learning a sign language. The authors reveal
the secret to successful interface design with gestures: A mechanism must be provided so users
can easily learn the gesture set. To accomplish this, skill transfer is used in a powerful way. For
example, an interaction technique called “marking menus” is described, where a user’s skills
with a graphical menu can used to magically teach a vocabulary of arbitrary “zig-zag” gestures.
In similar fashion, with a method called “just-in-time chrome,” users’ skills with interpreting
feedback and direct manipulation transfer directly into a rich vocabulary of multi-touch gestures.

 Understanding the concept of self-revealing gestures is absolutely critical for the successful
use of gestures in a user interface. Simply ask the following question for each gesture in your

CH020.indd 155CH020.indd 155 2/1/2011 5:50:19 PM2/1/2011 5:50:19 PM

156 CHAPTER 20 Self-Revealing Gestures

interface: How will the user learn it? Some gestures reveal
themselves because we see others use them, like the ubiquitous
“page-turn stroke” and “pinch-zoom.” However, to harness the
potential of richer, larger gesture sets the concepts introduced in
this chapter are paramount.

 Author Biography
Dr. Gordon Kurtenbach is the Director of Research at Autodesk (www
.autodeskresearch.com), where he oversees a large range of research including
human-computer interaction, graphics and simulation, environment and ergonomics,
high-performance computing, and CAD for nanotechnology. Dr. Kurtenbach has
published numerous research papers and holds over 40 patents in the fi eld of
human-computer interaction. His work on gesture-based interfaces, specifi cally
“marking menus,” has been highly infl uential in HCI research and practice. In 2005,
he received the UIST Lasting Impact Award for his early work on the fundamental
issues combining gestures and manipulation.

 FURTHER READING
 Grossman, T., Dragicevic, P., and Balakrishnan, R. Strategies for accelerating on-line learning of hotkeys,

 Proceedings of CHI , 2007, 1591–1600. In this work, Grossman et al. study various methods for teaching
accelerator keys.

 Kurtenbach, G. The Design and Evaluation of Marking Menus , Ph.D. Thesis. Gord Kurtenbach, working
with his advisor, Bill Buxton, at the University of Toronto, developed the marking menu. A series of pub-
lications describes the original concept, stages of learning, and how they can be integrated into interfaces.
While each was published separately, it is his Ph.D. thesis that describes them all together in great detail.

 Freeman, D., Benko, H., Morris, M., and Wigdor, D. ShadowGuides: Visualizations for in-Situ Learning
of Multi-Touch and Whole-Hand Gestures, Proceedings of ACM Tabletop , 2009. In this work, Freeman
and his colleagues make two major contributions. The fi rst is a set of representative gestures that spans
the space of possible gestural input to a surface-like device. The second is a teaching method they dub
“ShadowGuides,” for teaching gestures with on-screen affordances. In this chapter, we have emphasized
that UIs built in to the experience should afford gestures. ShadowGuides, in contrast, provide a visualiza-
tion that sits on top of the UI. While we don’t recommend this approach in general (it represents earlier
thinking in our work), it does nicely break down the idea of providing on-screen affordances for each of
the registration, continuation, and termination phases of the gestures they teach.

CH020.indd 156CH020.indd 156 2/1/2011 5:50:19 PM2/1/2011 5:50:19 PM

